Skip to main content
Log in

Surface curvature-confined strategy to ultrasmall nickel-molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Size-controlled synthesis of two-dimensional (2D) catalysts with low stacking numbers and small nanoflake lengths is crucial for promoting the catalytic performance in diverse heterogeneous catalysis. Herein, we report a facile and general “surface curvature-confined synthesis” strategy to modulate the slab lengths and stacking numbers of 2D transition metal sulfides by controlling the strain induced by different surface curvature of supports. An efficient NiMo sulfide with shorter slab length (average 3.71 nm), less stacking number (1–2 layers) and more edge active sites is synthesized onto ZSM-5 zeolites with the average size of 100 nm, which shows superior kHDS value of dibenzothiophene (14.05 × 10−7 mol/(g·s)), enhanced stability up to 80 h, and high direct desulfurization selectivity (> 95%). This design concept is also proved to be generally applicable to modulate the slab lengths and stacking numbers of other 2D catalysts such as MoS2 and WS2 nanoflakes, which shows great potentials for developing more ultrasmall 2D catalysts with controlled sizes and excellent catalytic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boudart, M.; Betta, R. A. D.; Foger, K.; Löffler, D. G.; Samant, M. G. Study by synchrotron radiation of the structure of a working catalyst at high temperatures and pressures. Science1985, 228, 717–719.

    CAS  Google Scholar 

  2. Yang, R. T.; Hernández-Maldonado, A. J.; Yang, F. H. Desulfurization of transportation fuels with zeolites under ambient conditions. Science2003, 301, 79–81.

    CAS  Google Scholar 

  3. Li, Y.; Pan, D. H.; Yu, C. Z.; Fan, Y.; Bao, X. J. Synthesis and hydrodesulfurization properties of NiW catalyst supported on high-aluminum-content, highly ordered, and hydrothermally stable Al-SBA-15. J. Catal.2012, 286, 124–136.

    Google Scholar 

  4. Fu, W. Q.; Zhang, L.; Tang, T. D.; Ke, Q. P.; Wang, S.; Hu, J. B.; Fang, G. Y.; Li, J. X.; Xiao, F. S. Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y. J. Am. Chem. Soc.2011, 133, 15346–15349.

    CAS  Google Scholar 

  5. Tang, T. D.; Zhang, L.; Fu, W. Q.; Ma, Y. L.; Xu, J.; Jiang, J.; Fang, G. Y.; Xiao, F. S. Design and synthesis of metal sulfide catalysts supported on zeolite nanofiber bundles with unprecedented hydrodesulfurization activities. J. Am. Chem. Soc.2013, 135, 11437–11440.

    CAS  Google Scholar 

  6. Zhou, W. W.; Liu, M. F.; Zhang, Q.; Wei, Q.; Ding, S. J.; Zhou, Y. S. Synthesis of NiMo catalysts supported on gallium-containing mesoporous Y zeolites with different gallium contents and their high activities in the hydrodesulfurization of 4,6-dimethyldibenzothiophene. ACS Catal.2017, 7, 7665–7679.

    CAS  Google Scholar 

  7. Liao, G. F.; Gong, Y.; Zhong, L.; Fang, J. S.; Zhang, L.; Xu, Z. S.; Gao, H. Y.; Fang, B. Z. Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction. Nano Res.2019, 12, 2407–2436.

    CAS  Google Scholar 

  8. Bui, N. Q.; Geantet, C.; Berhault, G. Maleic acid, an efficient additive for the activation of regenerated CoMo/Al2O3 hydrotreating catalysts. J. Catal.2015, 330, 374–386.

    CAS  Google Scholar 

  9. Wang, H. T.; Yuan, H. T.; Sae Hong, S.; Li, Y. B.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev.2015, 44, 2664–2680.

    CAS  Google Scholar 

  10. Singh, R.; Kunzru, D.; Sivakumar, S. Monodispersed ultrasmall NiMo metal oxide nanoclusters as hydrodesulfurization catalyst. Appl. Catal. B Environ.2016, 185, 163–173.

    CAS  Google Scholar 

  11. Lauritsen, J. V.; Kibsgaard, J.; Helveg, S.; Topsøe, H.; Clausen, B. S.; Laegsgaard, E.; Besenbacher, F. Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol.2007, 2, 53–58.

    CAS  Google Scholar 

  12. Liu, G. L.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem.2017, 9, 810–816.

    CAS  Google Scholar 

  13. Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase-purity 1T’-MoS2- and 1T’-MoSe2-layered crystals. Nat. Chem.2018, 10, 638–643.

    CAS  Google Scholar 

  14. Lau, T. H. M.; Lu, X. W.; Kulhavý, J.; Wu, S.; Lu, L. L.; Wu, T. S.; Kato, R.; Foord, J. S.; Soo, Y. L.; Suenaga, K. et al. Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution. Chem. Sci.2018, 9, 4769–4776.

    CAS  Google Scholar 

  15. Cheng, X. L.; Chai, X. Q.; Hu, W. G.; Li, S. G.; Zhu, Y. The on-and-off dynamics of thiophene on a nickel cluster enables efficient hydrodesulfurization and excellent stability at high temperatures. Nanoscale2019, 11, 4369–4375.

    CAS  Google Scholar 

  16. Naboulsi, I.; Aponte, C. F. L.; Lebeau, B.; Brunet, S.; Michelin, L.; Bonne, M.; Blin, J. L. An unexpected pathway for hydrodesulfurization of gazole over a CoMoS active phase supported on a mesoporous TiO2 catalyst. Chem. Commun.2017, 53, 2717–2720.

    CAS  Google Scholar 

  17. Chen, C. F.; Wu, A. P.; Yan, H. J.; Xiao, Y. L.; Tian, C. G.; Fu, H. G. Trapping [PMo12O40]3− clusters into pre-synthesized ZIF-67 toward MoxCoxC particles confined in uniform carbon polyhedrons for efficient overall water splitting. Chem. Sci.2018, 9, 4746–4755.

    CAS  Google Scholar 

  18. Wu, A. P.; Gu, Y.; Xie, Y.; Tian, C. G.; Yan, H. J.; Wang, D. X.; Zhang, X. M.; Cai, Z. Z.; Fu, H. G. Effective electrocatalytic hydrogen evolution in neutral medium based on 2D MoP/MoS2 heterostructure nanosheets. ACS Appl. Mater. Interfaces2019, 11, 25986–25995.

    CAS  Google Scholar 

  19. Toledo-Antonio, J. A.; Cortes-Jacome, M. A.; Escobar-Aguilar, J.; Angeles-Chavez, C.; Navarrete-Bolaños, J.; López-Salinas, E. Upgrading HDS activity of MoS2 catalysts by chelating thioglycolic acid to MoOx supported on alumina. Appl. Catal. B Environ.2017, 213, 106–117.

    CAS  Google Scholar 

  20. Wang, C. M.; Tsai, T. C.; Wang, I. Deep hydrodesulfurization over Co/Mo catalysts supported on oxides containing vanadium. J. Catal.2009, 262, 206–214.

    CAS  Google Scholar 

  21. Xu, J. D.; Guo, Y. F.; Huang, T. T.; Fan, Y. Decamethonium bromide-dispersed palladium nanoparticles on mesoporous HZSM-5 zeolites for deep hydrodesulfurization. Chem. Eng. J.2018, 333, 206–215.

    CAS  Google Scholar 

  22. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem.2013, 5, 263–275.

    Google Scholar 

  23. Shi, Y. M.; Li, H. N.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev.2015, 44, 2744–2756.

    CAS  Google Scholar 

  24. Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev.2015, 44, 2713–2731.

    CAS  Google Scholar 

  25. Cheng, X. S.; Wang, D. X.; Liu, J. C.; Kang, X.; Yan, H. J.; Wu, A. P.; Gu, Y.; Tian, C. G.; Fu, H. G. Ultra-small Mo2N on SBA-15 as a highly efficient promoter of low-loading Pd for catalytic hydrogenation. Nanoscale2018, 10, 22348–22356.

    CAS  Google Scholar 

  26. Yan, H. J.; Xie, Y.; Wu, A. P.; Cai, Z. C.; Wang, L.; Tian, C. G.; Zhang, X. M.; Fu, H. G. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater.2019, 31, 1901174.

    Google Scholar 

  27. Yan, H. J.; Tian, C. G.; Sun, L.; Wang, B.; Wang, L.; Yin, J.; Wu, A. P.; Fu, H. G. Small-sized and high-dispersed WN from [SiO4(W3O9)4]4− clusters loading on GO-derived graphene as promising carriers for methanol electro-oxidation. Energy Environ. Sci.2014, 7, 1939–1949.

    CAS  Google Scholar 

  28. Wang, D. X.; Liu, J. C.; Cheng, X. S.; Kang, X.; Wu, A. P.; Tian, C. G.; Fu, H. G. Trace Pt clusters dispersed on SAPO-11 promoting the synergy of metal sites with acid sites for high-effective hydroisomerization of n-alkanes. Small Methods2019, 3, 1800510.

    Google Scholar 

  29. Wang, D.; Zhu, Y. J.; Tian, C. G.; Wang, L.; Zhou, W.; Dong, Y. L.; Han, Q.; Liu, Y. F.; Yuan, F. L.; Fu, H. G. Synergistic effect of Mo2N and Pt for promoted selective hydrogenation of cinnamaldehyde over Pt-Mo2N/SBA-15. Catal. Sci. Technol.2016, 6, 2403–2412.

    CAS  Google Scholar 

  30. Fan, Y.; Shi, G.; Liu, H. Y.; Bao, X. J. Morphology tuning of supported MoS2 slabs for selectivity enhancement of fluid catalytic cracking gasoline hydrodesulfurization catalysts. Appl. Catal. B Environ.2009, 91, 73–82.

    CAS  Google Scholar 

  31. Li, L. J.; Zhang, Y. Controlling the luminescence of monolayer MoS2 based on the piezoelectric effect. Nano Res.2017, 10, 2527–2534.

    CAS  Google Scholar 

  32. Liu, J. C.; Wang, N.; Yu, Y.; Yan, Y.; Zhang, H. Y.; Li, J. Y.; Yu, J. H. Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci. Adv.2017, 3, e1603171.

    Google Scholar 

  33. Nix, W. D. Mechanical properties of thin films. Metall. Trans. A1989, 20, 2217–2245.

    Google Scholar 

  34. Lloyd, D.; Liu, X. H.; Christopher, J. W.; Cantley, L.; Wadehra, A.; Kim, B. L.; Goldberg, B. B.; Swan, A. K.; Bunch, J. S. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett.2016, 16, 5836–5841.

    CAS  Google Scholar 

  35. Brune, H.; Bromann, K.; Röder, H.; Kern, K.; Jacobsen, J.; Stoltze, P.; Jacobsen, K.; No/rskov, J. Effect of strain on surface diffusion and nucleation. Phys. Rev. B1995, 52, R14380.

    CAS  Google Scholar 

  36. Liu, L. C.; Lopez-Haro, M.; Lopes, C. W.; Li, C. G.; Concepcion, P.; Simonelli, L.; Calvino, J. J.; Corma, A. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater.2019, 18, 866–873.

    CAS  Google Scholar 

  37. Wang, N.; Sun, Q. M.; Yu, J. H. Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: A fascinating class of nanocatalysts. Adv. Mater.2019, 31, 1803966.

    Google Scholar 

  38. Méndez, F. J.; Franco-López, O. E.; Bokhimi, X.; Solís-Casados, D. A.; Escobar-Alarcón, L.; Klimova, T. E. Dibenzothiophene hydrodesulfurization with NiMo and CoMo catalysts supported on niobium-modified MCM-41. Appl. Catal. B Environ.2017, 219, 479–491.

    Google Scholar 

  39. Gao, D. W.; Duan, A. J.; Zhang, X.; Chi, K. B.; Zhao, Z.; Li, J. M.; Qin, Y. C.; Wang, X. L.; Xu, C. M. Self-assembly of monodispersed hierarchically porous beta-SBA-15 with different morphologies and its hydro-upgrading performances for FCC gasoline. J. Mater. Chem. A2015, 3, 16501–16512.

    CAS  Google Scholar 

  40. Jiao, F.; Guo, H. L.; Chai, Y. M.; Awala, H.; Mintova, S.; Liu, C. G. Synergy between a sulfur-tolerant Pt/Al2O3@sodalite core-shell catalyst and a CoMo/Al2O3 catalyst. J. Catal.2018, 368, 89–97.

    CAS  Google Scholar 

  41. Han, W.; Yuan, P.; Fan, Y.; Shi, G.; Liu, H. Y.; Bai, D. J.; Bao, X. J. Preparation of supported hydrodesulfurization catalysts with enhanced performance using Mo-based inorganic-organic hybrid nanocrystals as a superior precursor. J. Mater. Chem.2012, 22, 25340–25353.

    CAS  Google Scholar 

  42. Ke, W. Y.; Cui, T. L.; Yu, Q. Y.; Wang, M. Y.; Lv, L. B.; Wang, H. H.; Jiang, Z. D.; Li, X. H.; Chen, J. S. Mesoporous H-ZSM-5 nanocrystals with programmable number of acid sites as “solid ligands” to activate Pd nanoparticles for C-C coupling reactions. Nano Res.2018, 11, 874–881.

    CAS  Google Scholar 

  43. Xiao, F.; Zhang, C.; Wu, Q.; Lei, C.; Han, S.; Zhu, Q.; Maurer, S.; Dai, D.; Parvulescu, A. N.; Mueller, U. et al. An efficient, rapid, and non-centrifugation synthesis of nanosized zeolites by accelerating the nucleation rate. J. Mater. Chem. A2018, 6, 21156–21161.

    Google Scholar 

  44. Kuechl, D. E.; Benin, A. I.; Knight, L. M.; Abrevaya, H.; Wilson, S. T.; Sinkler, W.; Mezza, T. M.; Willis, R. R. Multiple paths to nanocrystalline high silica beta zeolite. Micropor. Mesopor. Mater.2010, 127, 104–118.

    CAS  Google Scholar 

  45. Li, B.; Hu, Z. J.; Kong, B.; Wang, J. X.; Li, W.; Sun, Z. K.; Qian, X. F.; Yang, Y. S.; Shen, W.; Xu, H. L. et al. Hierarchically tetramodal-porous zeolite ZSM-5 monoliths with template-free-derived intracrystalline mesopores. Chem. Sci.2014, 5, 1565–1573.

    CAS  Google Scholar 

  46. Xu, J. Q.; Zhang, Q.; Guo, F.; Wang, Y. Q.; Xie, J. Q. Highly hydrothermal stable mesoporous molecular sieves (TZM) prepared by the self assembly of zeolitic subunits from ZSM-5 desilication and their catalytic performance for CO2 reforming of CH4. New J. Chem.2018, 42, 19000–19007.

    CAS  Google Scholar 

  47. Beale, A. M.; Gao, F.; Lezcano-Gonzalez, I.; Peden, C. H. F.; Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev.2015, 44, 7371–7405.

    CAS  Google Scholar 

  48. Hou, X.; Qiu, Y.; Zhang, X. W.; Liu, G. Z. Effects of regeneration of ZSM-5 based catalysts on light olefins production in n-pentane catalytic cracking. Chem. Eng. J.2017, 321, 572–583.

    CAS  Google Scholar 

  49. Wang, X. L.; Mei, J. L.; Zhao, Z.; Zheng, P.; Chen, Z. T.; Gao, D. W.; Fu, J. Y.; Fan, J. Y.; Duan, A. J.; Xu, C. M. Self-assembly of hierarchically porous ZSM-5/SBA-16 with different morphologies and its high isomerization performance for hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. ACS Catal.2018, 8, 1891–1902.

    CAS  Google Scholar 

  50. Afanasiev, P. On the interpretation of temperature programmed reduction patterns of transition metals sulphides. Appl. Catal. A Gen.2006, 303, 110–115.

    CAS  Google Scholar 

  51. Jiao, J. Q.; Fu, J. Y.; Wei, Y. C.; Zhao, Z.; Duan, A. J.; Xu, C. M.; Li, J. M.; Song, H.; Zheng, P.; Wang, X. L. et al. Al-modified dendritic mesoporous silica nanospheres-supported NiMo catalysts for the hydrodesulfurization of dibenzothiophene: Efficient accessibility of active sites and suitable metal-support interaction. J. Catal.2017, 356, 269–282.

    CAS  Google Scholar 

  52. Xu, J. D.; Huang, T. T.; Fan, Y. Highly efficient NiMo/SiO2-Al2O3 hydrodesulfurization catalyst prepared from gemini surfactant-dispersed Mo precursor. Appl. Catal. B Environ.2017, 203, 839–850.

    CAS  Google Scholar 

  53. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater.2012, 22, 1385–1390.

    CAS  Google Scholar 

  54. Xu, J. D.; Guo, Y. F.; Huang, T. T.; Fan, Y. Hexamethonium bromide-assisted synthesis of CoMo/graphene catalysts for selective hydrodesulfurization. Appl. Catal. B Environ.2019, 244, 385–395.

    CAS  Google Scholar 

  55. Zhang, C.; Li, P.; Liu, X. Y.; Liu, T. F.; Jiang, Z. X.; Li, C. Morphology-performance relation of (Co)MoS2 catalysts in the hydrodesulfurization of FCC gasoline. Appl. Catal. A Gen.2018, 556, 20–28.

    CAS  Google Scholar 

  56. Salavati, H.; Rasouli, N. Synthesis and characterization of supported heteropolymolybdate nanoparticles between silicate layers of bentonite with enhanced catalytic activity for epoxidation of alkenes. Mater. Res. Bull.2011, 46, 1853–1859.

    CAS  Google Scholar 

  57. Zhu, C. R.; Wang, G.; Liu, B. L.; Marie, X.; Qiao, X. F.; Zhang, X.; Wu, X. X.; Fan, H.; Tan, P. H.; Amand, T. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B2013, 88, 121301.

    Google Scholar 

  58. Li, Z.; Jiang, K. R.; Khan, F.; Goswami, A.; Liu, J.; Passian, A.; Thundat, T. Anomalous interfacial stress generation during sodium intercalation/extraction in MoS2 thin-film anodes. Sci. Adv.2019, 5, eaav2820.

    Google Scholar 

  59. Zhou, W. W.; Wei, Q.; Zhou, Y. S.; Liu, M. F.; Ding, S. J.; Yang, Q. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes. Appl. Catal. B Environ.2018, 238, 212–224.

    CAS  Google Scholar 

  60. Li, Y.; Li, G. C.; Zhang, F.; Chen, L.; Li, X. B.; Huang, X. Size-dependent activity of unsupported Co-Mo sulfide catalysts for the hydrodesulfurization of dibenzothiophene. Appl. Catal. A Gen.2016, 512, 85–92.

    Google Scholar 

  61. Biswas, P.; Narayanasarma, P.; Kotikalapudi, C. M.; Dalai, A. K.; Adjaye, J. Characterization and activity of ZrO2 doped SBA-15 supported NiMo catalysts for HDS and HDN of bitumen derived heavy gas oil. Ind. Eng. Chem. Res.2011, 50, 7882–7895.

    CAS  Google Scholar 

  62. Duan, A. J.; Li, T. S.; Zhao, Z.; Liu, B. J.; Zhou, X. F.; Jiang, G. Y.; Liu, J.; Wei, Y. C.; Pan, H. F. Synthesis of hierarchically porous L-KIT-6 silica-alumina material and the super catalytic performances for hydrodesulfurization of benzothiophene. Appl. Catal. B Environ.2015, 165, 763–773.

    CAS  Google Scholar 

  63. Zhu, D. D.; Liu, J. L.; Zhao, Y. Q.; Zheng, Y.; Qiao, S. Z. Engineering 2D metal-organic framework/MoS2 interface for enhanced alkaline hydrogen evolution. Small2019, 15, 1805511.

    Google Scholar 

  64. Wu, A. P.; Tian, C. G.; Yan, H. J.; Jiao, Y. Q.; Yan, Q.; Yang, G. Y.; Fu, H. G. Hierarchical MoS2/CdS core-shell heterojunction electrocatalysts for efficient hydrogen evolution reaction over a broad pH range. Nanoscale2016, 8, 11052–11059.

    CAS  Google Scholar 

  65. Ninh, T. K. T.; Massin, L.; Laurenti, D.; Vrinat, M. A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts. Appl. Catal. A Gen.2011, 407, 29–39.

    CAS  Google Scholar 

  66. Wu, A. P.; Tian, C. G.; Jiao, Y. Q.; Yan, Q.; Yang, G. Y.; Fu, H. G. Sequential two-step hydrothermal growth of MoS2/CdS core-shell heterojunctions for efficient visible light-driven photocatalytic H2 evolution. Appl. Catal. B Environ.2017, 203, 955–963.

    CAS  Google Scholar 

  67. Liu, B.; Liu, L.; Chai, Y. M.; Zhao, J. C.; Li, Y. P.; Liu, D.; Liu, Y. Q.; Liu, C. G. Effect of sulfiding conditions on the hydrodesulfurization performance of the ex-situ presulfided CoMoS/γ-Al2O3 catalysts. Fuel2018, 234, 1144–1153.

    CAS  Google Scholar 

  68. Yan, H. J.; Xie, Y.; Wu, A. P.; Cai, Z. C.; Wang, L.; Tian, C. G.; Zhang, X. M.; Fu, H. G. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater.2019, 31, 1901174.

    Google Scholar 

  69. López-Benítez, A.; Guevara-Lara, A.; Berhault, G. Nickel-containing polyoxotungstates based on [PW9O34]9− and [PW10O39]13− Keggin lacunary anions supported on Al2O3 for dibenzothiophene hydrodesulfurization application. ACS Catal.2019, 9, 6711–6727.

    Google Scholar 

  70. Jalilov, A. S.; Tanimu, A.; Ganiyu, S. A.; Alhooshani, K. Kinetic and mechanistic analysis of dibenzothiophene hydrodesulfurization on Ti-SBA-15-NiMo catalysts. Energy Fuels2018, 32, 11383–11389.

    CAS  Google Scholar 

  71. Salazar, N.; Schmidt, S. B.; Lauritsen, J. V. Adsorption of nitrogenous inhibitor molecules on MoS2 and CoMoS hydrodesulfurization catalysts particles investigated by scanning tunneling microscopy. J. Catal.2019, 370, 232–240.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFE0201704), the National Natural Science Foundation of China (Nos. 21631004, 21801069, 21571054, and 21901064), the Fundamental Research Funds for Central Universities (Nos. 3072019CFJ1502 and RCYJTD201801), the University Program for Young Scholars with Creative Talents in Heilongjiang Province (No. UNPYSCT-2018013), Heilongjiang Provincial Postdoctoral Science Foundation (No. LBH-Z18232) and the Heilongjiang University Excellent Youth Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiancong Liu or Honggang Fu.

Electronic Supplementary Material

12274_2020_2716_MOESM1_ESM.pdf

Surface curvature-confined strategy to ultrasmall nickel-molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, X., Liu, J., Tian, C. et al. Surface curvature-confined strategy to ultrasmall nickel-molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization. Nano Res. 13, 882–890 (2020). https://doi.org/10.1007/s12274-020-2716-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2716-x

Keywords

Navigation