Skip to main content
Log in

Tetrafunctional Cu2S thin layers on Cu2O nanowires for efficient photoelectrochemical water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photoelectrochemical (PEC) water splitting by photocathodes based on p-type semiconductors is a promising process for direct and efficient hydrogen generation. The identification of ideal photocathode materials with a high photoconversion efficiency and long-term stability is still a significant challenge. Herein, we propose a new photocathode consisting of Cu2S-coated Cu2O nanowires (NWs) supported on a three-dimensional porous copper foam. The Cu2S thin layer is generated in situ on the surface of the Cu2O NWs and has four functions: (1) Sensitizer, with a band gap of 1.2 eV, for extending the range of optical absorption into the near-infrared region; (2) electron trapper, with appropriate energy level alignment to Cu2O, for achieving effective electron transfer and trapping; (3) electrocatalyst, with excellent electrocatalytic activity for the hydrogen evolution reaction; and (4) protector, preventing direct contact between Cu2O and the electrolyte in order to significantly increase the stability. A photocathode based on the tetrafunctional Cu2S-coated Cu2O NWs exhibits significantly enhanced PEC performance and remarkably improved long-term stability under illumination. The present strategy, based on the in situ generation of multifunctional layers, opens a new avenue for the rational design of photocathodes for PEC water reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  Google Scholar 

  2. Zhang, Z. H.; Dua, R.; Zhang, L. B.; Zhu, H. B.; Zhang, H. N.; Wang, P. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano 2013, 7, 1709–1717.

    Article  Google Scholar 

  3. Li, Z. Z.; Xin, Y. M.; Zhang, Z. H. New photocathodic analysis platform with quasi-core/shell-structured TiO2@ Cu2O for sensitive detection of H2O2 release from living cells. Anal. Chem. 2015, 87, 10491–10497.

    Article  Google Scholar 

  4. Zhang, R.; Yang, L.; Huang, X. N.; Chen, T.; Qu, F. L.; Liu, Z. A.; Du, G.; Asiri, A. M.; Sun, X. P. Se doping: An effective strategy toward Fe2O3 nanorod arrays for greatly enhanced solar water oxidation. J. Mater. Chem. A 2017, 5, 12086–12090.

    Article  Google Scholar 

  5. Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 2011, 10, 456–461.

    Article  Google Scholar 

  6. Paracchino, A.; Mathews, N.; Hisatomi, T.; Stefik, M.; Tilley, S. D.; Grätzel, M. Ultrathin films on copper(I) oxide water splitting photocathodes: A study on performance and stability. Energy Environ. Sci. 2012, 5, 8673–8681.

    Article  Google Scholar 

  7. Morales-Guio, C. G.; Tilley, S. D.; Vrubel, H.; Grätzel, M.; Hu, X. L. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 2014, 5, 3059.

    Article  Google Scholar 

  8. Schreier, M.; Luo, J. S.; Gao, P.; Moehl, T.; Mayer, M. T.; Grätzel, M. Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction. J. Am. Chem. Soc. 2016, 138, 1938–1946.

    Article  Google Scholar 

  9. Zhang, L. Z.; Jing, D. W.; Guo, L. J.; Yao, X. D. In situ photochemical synthesis of Zn-doped Cu2O hollow microcubes for high efficient photocatalytic H2 production. ACS Sustainable Chem. Eng. 2014, 2, 1446–1452.

    Article  Google Scholar 

  10. Tian, J. Q.; Li, H. Y.; Xing, Z. C.; Wang, L.; Luo, Y. L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. One-pot green hydrothermal synthesis of CuO-Cu2O-Cu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation. Catal. Sci. Technol., 2012, 2, 2227–2230.

    Article  Google Scholar 

  11. Ho-Kimura, S.; Moniz, S. J. A.; Tang, J.; Parkin, I. P. A method for synthesis of renewable Cu2O junction composite electrodes and their photoelectrochemical properties. ACS Sustainable Chem. Eng. 2015, 3, 710–717.

    Article  Google Scholar 

  12. Shi, J.; Li, J.; Huang, X. J.; Tan, Y. W. Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra. Nano Res. 2011, 4, 448–459.

    Article  Google Scholar 

  13. Zhang, Z. H.; Wang, P. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 2012, 22, 2456–2464.

    Article  Google Scholar 

  14. Zhuang, T. T.; Liu, Y.; Li, Y.; Zhao, Y.; Wu, L.; Jiang, J.; Yu, S. H. Integration of semiconducting sulfides for fullspectrum solar energy absorption and efficient charge separation. Angew. Chem., Int. Ed. 2016, 55, 6396–6400.

    Article  Google Scholar 

  15. Minguez-Bacho, I.; Courté, M.; Fan, H. J.; Fichou, D. Conformal Cu2S-Coated Cu2O nanostructures grown by ion exchange reaction and their photoelectrochemical properties. Nanotechnology 2015, 26, 185401.

    Article  Google Scholar 

  16. Gao, M. R.; Xu, Y. F.; Jiang, J.; Yu, S. H. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42, 2986–3017.

    Article  Google Scholar 

  17. Kim, Y.; Park, K. Y.; Jang, D. M.; Song, Y. M.; Kim, H. S.; Cho, Y. J.; Myung, Y.; Park, J. Synthesis of Au-Cu2S coreshell nanocrystals and their photocatalytic and electrocatalytic activity. J. Phys. Chem. C 2010, 114, 22141–22146.

    Article  Google Scholar 

  18. Xie, L.; Asiri, A. M.; Sun, X. P. Monolithically integrated copper phosphide nanowire: An efficient electrocatalyst for sensitive and selective nonenzymatic glucose detection. Sens. Actuators. B: Chem. 2017, 244, 11–16.

    Article  Google Scholar 

  19. Liu, M.; Zhang, R.; Zhang, L. X.; Liu, D. N.; Hao, S.; Du, G.; Asiri, M. A.; Kong, R.; Sun, X. P. Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction. Inorg. Chem. Front. 2017, 4, 420–423.

    Article  Google Scholar 

  20. Alam, R.; Labine, M.; Karwacki, J. C.; Kamat, P. V. Modulation of Cu2–xS nanocrystal plasmon resonance through reversible photoinduced electron transfer. ACS Nano 2016, 10, 2880–2886.

    Article  Google Scholar 

  21. Georgieva, Z. N.; Tomat, M. A.; Kim, C.; Plass, K. E. Stabilization of Plasmon resonance in Cu2−xS semiconductor nanoparticles. Chem. Commun. 2016, 52, 9082–9085.

    Article  Google Scholar 

  22. Wang, S. H.; Riedinger, A.; Li, H. B.; Fu, C. H.; Liu, H. Y.; Li, L. L.; Liu, T. L.; Tan, L. F.; Barthel, M. J.; Pugliese, G. et al. Plasmonic copper sulfide nanocrystals exhibiting nearinfrared photothermal and photodynamic therapeutic effects. ACS Nano 2015, 9, 1788–1800.

    Article  Google Scholar 

  23. Li, M.; Zhao, R. J.; Su, Y. J.; Hu, J.; Yang, Z.; Zhang, Y. F. Synthesis of CuInS2 nanowire arrays via solution transformation of Cu2S self-template for enhanced photoelectrochemical performance. Appl. Catal. B: Environ. 2017, 203, 715–724.

    Article  Google Scholar 

  24. Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577–9581.

    Article  Google Scholar 

  25. Xie, L. S.; Tang, C.; Wang, K. Y.; Du, R.; Asiri, A. M.; Sun, X. P. Cu(OH)2@CoCO3(OH)2·nH2O core-shell heterostructure nanowire array: an efficient 3D anodic catalyst for oxygen evolution and methanol electrooxidation. Small 2017, 13, 1602755.

    Article  Google Scholar 

  26. Zhao, Y.; Wang, C. Y.; Wallace, G. G. Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO.J. Mater. Chem. A 2016, 4, 10710–10718.

    Article  Google Scholar 

  27. Wu, G. J.; Guan, N. J.; Li, L. D. Low temperature CO oxidation on Cu-Cu2O/TiO2 catalyst prepared by photodeposition. Catal. Sci. Technol. 2011, 1, 601–608.

    Article  Google Scholar 

  28. Meng, C. H.; Liu, Z. Y.; Zhang, T. R.; Zhai, J. Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. Green Chem. 2015, 17, 2764–2768.

    Article  Google Scholar 

  29. Nakamura, S.; Yamamoto, A. Electrodeposition of pyrite(FeS2) thin films for photovoltaic cells. Sol. Energy Mater. Sol. Cells 2001, 65, 79–85.

    Article  Google Scholar 

  30. Du, J. K.; Bao, J. G.; Fu, X. Y.; Lu, C. H.; Kim, S. H. Mesoporous sulfur-modified iron oxide as an effective fenton-like catalyst for degradation of bisphenol A. Appl. Catal. B 2016, 184, 132–141.

    Article  Google Scholar 

  31. Amorousse, R.; Fujisato, K.; Habu, H.; Bachar, A.; Follet-Houttemane, C.; Hori, K. Catalytic decomposition of ammonium dinitramide (ADN) as high energetic material over CuO-based catalysts. Catal. Sci. Technol. 2013, 3, 2614–2619.

    Article  Google Scholar 

  32. An, L.; Huang, L.; Zhou, P. P.; Yin, J.; Liu, H. Y.; Xi, P. X. A self-standing high-performance hydrogen evolution electrode with nanostructured NiCo2O4/CuS heterostructures. Adv. Funct. Mater. 2015, 25, 6814–6822.

    Google Scholar 

  33. Zhang, Z. H.; Yang, X. L.; Hedhili, M. N.; Ahmed, E.; Shi, L.; Wang, P. Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interface 2014, 6, 691–696.

    Article  Google Scholar 

  34. Wang, P.; Ng, Y. H.; Amal, R. Embedment of anodized p-type Cu2O thin films with CuO nanowires for improvement in photoelectrochemical stability. Nanoscale 2013, 5, 2952–2958.

    Article  Google Scholar 

  35. Huang, Q.; Kang, F.; Liu, H.; Li, Q.; Xiao, X. D. Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis. J. Mater. Chem. A, 2013, 1, 2418–2425.

    Article  Google Scholar 

  36. Kargar, A.; Partokia, S. S.; Niu, M. T.; Allameh, P.; Yang, M. C.; May, S.; Cheung, J. S.; Sun, K.; Xu, K.; Wang, D. Solution-grown 3D Cu2O networks for efficient solar water splitting. Nanotechnology 2014, 25, 205401.

    Article  Google Scholar 

  37. Dubale, A. A.; Pan, C. J.; Tamirat, A. G.; Chen, H. M.; Su, W. N.; Chen, C. H.; Rick, J.; Ayele, D. W.; Aragaw, B. A.; Lee, J. F. et al. Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. J. Mater. Chem. A 2015, 3, 12482–12499.

    Article  Google Scholar 

  38. Dubale, A. A.; Su, W. N.; Tamirat, A. G.; Pan, C. J.; Aragaw, B. A.; Chen, H. M.; Chen, C. H.; Hwang, B. J. The Nano Res. 11 synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting. J. Mater. Chem. A 2014, 2, 18383–18397.

    Article  Google Scholar 

  39. Dubale, A. A.; Tamirat, A. G.; Chen, H. M.; Berhe, T. A.; Pan, C. J.; Su, W. N.; Hwang, B. J. A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 2205–2216.

    Article  Google Scholar 

  40. Jin, Z. X.; Hu, Z. F.; Yu, J. C.; Wang, J. F. Room temperature synthesis of a highly active Cu/Cu2O photocathode for photoelectrochemical water splitting. J. Mater. Chem. A, 2016, 4, 13736–13741.

    Article  Google Scholar 

  41. Ye, M. D.; Gong, J. J.; Lai, Y. K.; Lin, C. J.; Lin, Z. Q. High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J. Am. Chem. Soc. 2012, 134, 15720–15723.

    Article  Google Scholar 

  42. Savchenko, N. D.; Shchurova, T. N.; Popovych, K. O.; Rubish, I. D.; Leising, G. Simulation of electronic states in the band gap of ZnS:Cu, Cl crystallophosphors. Semicond. Phys., Quantum Electron. Optoelectron. 2004, 7, 133–137.

    Google Scholar 

Download references

Acknowledgements

Z.H.Z. thanks to the support from “Yingcai” program of ECNU and the National Natural Science Foundation of China (NSFC) (No. 21405046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghai Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, Z. Tetrafunctional Cu2S thin layers on Cu2O nanowires for efficient photoelectrochemical water splitting. Nano Res. 11, 1530–1540 (2018). https://doi.org/10.1007/s12274-017-1769-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1769-y

Keywords

Navigation