Skip to main content
Log in

Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A series of unique nanowire superstructures, Cu2O nanowire polyhedra, have been synthesized through a cost-effective hydrothermal route. Three types of nanowire polyhedra, namely octahedra, concave octahedra, and hexapods, were formed in high morphological yields (90%) by reducing cupric acetate with o-anisidine or o-phenetidine in the presence of carboxylic acids. The architectures of these Cu2O nanowire polyhedra were examined by electron microscopy, which revealed ordered, highly aligned Cu2O nanowires within the polyhedral outlines. The growth of the Cu2O nanowire polyhedra is controlled by the orientation and growth rates of the nanowire branches which are adjusted by addition of carboxylic acids. Compared to the Cu2O samples reported in the recent literature, the Cu2O nanowire octahedra exhibit notably enhanced photocatalytic activities for dye degradation in the presence of H2O2 under visible light, probably due to the high-density charge carriers photoexcited from the branched nanowires with their special structures. Additionally, the discussion in the recent literature of the photocatalytic activity of Cu2O in the absence of H2O2 for direct photodegradation of dyes seems questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater. 2006, 18, 867–871.

    Article  CAS  Google Scholar 

  2. Zhang, H.; Zhu, Q.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv. Funct. Mater. 2007, 17, 2766–2771.

    Article  CAS  Google Scholar 

  3. Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes. J. Am. Chem. Soc. 2010, 132, 6131–6144.

    Article  CAS  Google Scholar 

  4. White, B.; Yin, M.; Hall, A.; Le, D.; Stolbov, S.; Rahman, T.; Turro, N.; O’Brien, S. Complete CO oxidation over Cu2O nanoparticles supported on silica gel. Nano Lett. 2006, 6, 2095–2098.

    Article  CAS  Google Scholar 

  5. Niu, F.; Jiang, Y.; Song W. In situ loading of Cu2O nanoparticles on a hydroxyl group rich TiO2 precursor as an excellent catalyst for the Ullmann reaction. Nano Res. 2010, 3, 757–763.

    Article  CAS  Google Scholar 

  6. Leng, M.; Liu, M.; Zhang, Y.; Wang, Z.; Yu, C.; Yang, X.; Zhang, H.; Wang, C. Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: Synthesis and enhanced catalytic CO oxidation activity. J. Am. Chem. Soc. 2010, 132, 17084–17087.

    Article  CAS  Google Scholar 

  7. de Jongh, P. E.; Vanmaelkelbergh, D.; Kelly, J. J. Cu2O: A catalyst for the photochemical decomposition of water? Chem. Commun. 1999, 1069–1070.

  8. Xu, H.; Wang, W.; Zhu, W. Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. J. Phys. Chem. B 2006, 110, 13829–13834.

    Article  CAS  Google Scholar 

  9. Kuo, C. -H.; Huang, M. H. Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. J. Phys. Chem. C 2008, 112, 18355–18360.

    CAS  Google Scholar 

  10. Kuo, C. -H.; Chen, C. -H.; Huang, M. H. Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Adv. Funct. Mater. 2007, 17, 3773–3780.

    Article  CAS  Google Scholar 

  11. Gao, J.; Li, Q.; Zhao, H.; Li, L.; Liu, C.; Gong, Q.; Qi, L. One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties. Chem. Mater. 2008, 20, 6263–6269.

    Article  CAS  Google Scholar 

  12. Yuhas, B. D.; Yang, P. Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 2009, 131, 3756–3761.

    Article  CAS  Google Scholar 

  13. Deki, S.; Akamatsu, K.; Yano, T.; Mizuhata, M.; Kajinami, A. Preparation and characterization of copper(I) oxide nanoparticles dispersed in a polymer matrix. J. Mater. Chem. 1998, 8, 1865–1868.

    Article  CAS  Google Scholar 

  14. Rockenberger, J.; Scher, E. C.; Alivisatos, A. P. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J. Am. Chem. Soc. 1999, 121, 11595–11560.

    Article  CAS  Google Scholar 

  15. Borgohain, K.; Murase, N.; Mahamuni, S. Synthesis and properties of Cu2O quantum particles. J. Appl. Phys. 2002, 92, 1292–1297.

    Article  CAS  Google Scholar 

  16. Yin, M.; Wu, C. -K.; Lou, Y.; Burda, C.; Koberstein, J. T.; Zhu, Y.; O’Brien, S. Copper oxide nanocrystals. J. Am. Chem. Soc. 2005, 127, 9506–9511.

    Article  CAS  Google Scholar 

  17. Gou, L.; Murphy, C. J. Controlling the size of Cu2O nanocubes from 200 to 25 nm J. Mater. Chem. 2004, 14, 735–738.

    Article  CAS  Google Scholar 

  18. Ng, C. H. B.; Fan, W. Y. Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth. J. Phys. Chem. B 2006, 110, 20801–20807.

    Article  CAS  Google Scholar 

  19. Xu, H.; Wang, W. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed. 2007, 46, 1489–1492.

    Article  CAS  Google Scholar 

  20. Chang, Y.; Teo, J. J.; Zeng, H. C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 2005, 21, 1074–1079.

    Article  CAS  Google Scholar 

  21. Teo, J. J.; Chang, Y.; Zeng, H. C. Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir 2006, 22, 7369–7377.

    Article  CAS  Google Scholar 

  22. Lu, C.; Qi, L.; Yang, J.; Wang, X.; Zhang, D.; Xie, J.; Ma, J. One-pot synthesis of octahedral Cu2O nanocages via a catalytic solution route. Adv. Mater. 2005, 17, 2562–2567.

    Article  CAS  Google Scholar 

  23. Kuo, C. -H.; Huang, M. H. Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching. J. Am. Chem. Soc. 2008, 130, 12815–12820.

    Article  CAS  Google Scholar 

  24. Wang, W.; Wang, G.; Wang, X.; Zhan, Y.; Liu, Y.; Zheng, C. Synthesis and characterization of Cu2O nanowires by a novel reduction route. Adv. Mater. 2002, 14, 67–69.

    Article  CAS  Google Scholar 

  25. Xiong, Y.; Li, Z.; Zhang, R.; Xie, Y.; Yang, J.; Wu, C. From complex chains to 1D metal oxides, a novel strategy to Cu2O nanowires. J. Phys. Chem. B 2003, 107, 3697–3702.

    Article  CAS  Google Scholar 

  26. Tan, Y.; Xue, X.; Peng, Q.; Zhao, H.; Wang, T.; Li, Y. Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios. Nano Lett. 2007, 7, 3723–3728.

    Article  CAS  Google Scholar 

  27. Ge, J. -P.; Wang, J.; Zhang, H. -X.; Wang, X.; Peng, Q.; Li, Y. D. Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior. Chem. Eur. J. 2005, 11, 1889–1894.

    Article  CAS  Google Scholar 

  28. Zhou, J.; Ding, Y.; Deng, S. Z.; Gong, L.; Xu, N. S.; Wang, Z. L. Three-dimensional tungsten oxide nanowire networks. Adv. Mater. 2005, 17, 2107–2110.

    Article  CAS  Google Scholar 

  29. Zhu, J.; Peng, H.; Chan, C. K.; Jarausch, K.; Zhang, X. F.; Cui, Y. Hyperbranched lead selenide nanowire networks. Nano Lett. 2007, 7, 1095–1099.

    Article  CAS  Google Scholar 

  30. Bierman, M. J.; Lau, Y. K. A.; Jin, S. Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. Nano Lett. 2007, 7, 2907–2912.

    Article  CAS  Google Scholar 

  31. He, J. H.; Ho, C. H.; Wang, C. W.; Ding, Y.; Chen, L. J.; Wang, Z. L. Growth of crossed ZnO nanorod networks induced by polar substrate surface. Cryst. Growth Des. 2009, 9, 17–19.

    Article  CAS  Google Scholar 

  32. Gu, Z.; Liu, F.; Howe, J. Y.; Paranthaman, M. P.; Pan, Z. Three-dimensional germanium oxide nanowire networks. Cryst. Growth Des. 2009, 9, 35–39.

    Article  CAS  Google Scholar 

  33. Wu, Y.; Livneh, T.; Zhang, Y. X.; Cheng, G.; Wang, J.; Tang, J.; Moskovits, M.; Stucky, G. D. Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays. Nano Lett. 2004, 4, 2337–2342.

    Article  CAS  Google Scholar 

  34. Wang, D.; Qian, F.; Yang, C.; Zhong, Z.; Lieber, C. M. Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 2004, 4, 871–874.

    Article  CAS  Google Scholar 

  35. Sun, S.; Zhou, F.; Wang, L.; Song, X.; Yang, Z. Templatefree synthesis of well-defined truncated edge polyhedral Cu2O architectures. Cryst. Growth Des. 2010, 10, 541–547.

    Article  CAS  Google Scholar 

  36. Chang, Y.; Zeng, H. C. Manipulative synthesis of multipod frameworks for self-organization and self-amplification of Cu2O microcrystals. Cryst. Growth Des. 2004, 4, 273–278.

    Article  CAS  Google Scholar 

  37. Hull, K. L.; Grebinski, J. W.; Kosel, T. H.; Kuno, M. Induced branching in confined PbSe nanowires. Chem. Mater. 2005, 17, 4416–4425.

    Article  CAS  Google Scholar 

  38. Zhang, Z.; Wan, M.; Wei, Y. Highly crystalline polyaniline nanostructures doped with dicarboxylic acids. Adv. Funct. Mater. 2006, 16, 1100–1104.

    Article  CAS  Google Scholar 

  39. Pan, L.; Pu, L.; Shi, Y.; Sun, T.; Zhang, R.; Zheng, Y. Hydrothermal synthesis of polyaniline mesostructures. Adv. Funct. Mater. 2006, 16, 1279–1288.

    Article  CAS  Google Scholar 

  40. Tatsuma, T.; Tachibana, S. -i.; Miwa, T.; Tryk, D. A.; Fujishima, A. Remote bleaching of methylene blue by UV-irradiated TiO2 in the gas phase. J. Phys. Chem. B 1999, 103, 8033–8035.

    Article  CAS  Google Scholar 

  41. Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 2010, 26, 3894–3901.

    Article  CAS  Google Scholar 

  42. Schöppel, H. R.; Gerischer, H. The cathodic reduction of Cu-I-oxide electrodes as an example of the mechanism of reduction of a semiconductor crystal. Ber. Bunsenges Phys. Chem. 1971, 75, 1237–1239.

    Google Scholar 

  43. Boyer, C.; Gamburzev, S.; Velev, O.; Srinivasan, S.; Appleby, A. J. Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes. Electrochim. Acta 1998, 43, 3703–3709.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwei Tan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Li, J., Huang, X. et al. Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra. Nano Res. 4, 448–459 (2011). https://doi.org/10.1007/s12274-011-0101-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0101-5

Keywords

Navigation