Skip to main content
Log in

Comparative Analysis of UV Irradiation Effects on Escherichia coli and Pseudomonas aeruginosa Bacterial Cells Utilizing Biological and Computational Approaches

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Microorganisms have a large number of tools to withstand different, and sometimes strong, environmental stresses, including irradiation, but this ability should be further evaluated for certain applications. Growth inhibition and morphological alterations of Escherichia coli M-17 and Pseudomonas aeruginosa GRP3 wild-type cells caused by UV-A irradiation have been detected in the present study. Comparative analysis was carried out using well-established microbiological methods (determination of specific growth rate, growth lag phase duration, and colony-forming unit number—CFU) and computational approaches, employing light microscopy and digital image analysis to evaluate bacterial cell morphology. Decreases in the specific growth rate, prolonged lag-phases, and lowered CFUs were observed after 5 and 10 min of UV irradiation (approx. 40 Gy) compared to the control (nonirradiated) cells. Accordingly, two computational parameters—the average bacterial cell surface area and the bacterial cell perimeter (i.e., of the 2D projection of bacterial cells in microscopy image)—were reduced. The ratio of bacterial cell surface area (S) to the square of the perimeter (p 2) was reduced after 5 min of irradiation, but after 10 min of irradiation the studied bacterial cells became flat cylinders. The revealed findings are concluded to be highly useful in developing new, rapid analysis methods to monitor environmental and UV irradiation effects on bacteria and to detect bacterial cell morphology alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive earth’s biogeochemical cycles. Science, 320(5879), 1034–1039.

    Article  Google Scholar 

  2. Kudryasheva N, Rozhko T, Alexandrova M, Vasyunkina E, Arkhipova V (2010). Effects of ionizing radiation on luminous bacteria cells. 10th Radiation Physics & Protection Conference, Proc., Nasr City—Cairo, Egypt, pp. 31-34.

  3. Diffey, B. L. (2002). Sources and measurement of ultraviolet radiation. Methods, 28, 4–13.

    Article  CAS  PubMed  Google Scholar 

  4. Santos, A. L., Moreirinha, C., Lopes, D., Esteves, A. C., Henriques, I., Almeida, A., et al. (2013). Effects of UV radiation on the lipids and proteins of bacteria studied by mid-infrared spectroscopy. Environmental Science and Technology, 47, 6306–6315.

    CAS  PubMed  Google Scholar 

  5. Woo, I. S., Rhee, I. K., & Park, H. D. (2000). Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure. Applied and Environment Microbiology, 66, 2243–2247.

    Article  CAS  Google Scholar 

  6. Ho¨rtnagl, P., Pe´rez, M. T., & Sommaruga, R. (2011). Contrasting effects of ultraviolet radiation on the growth efficiency of freshwater bacteria. Aquatic Ecology, 45, 125–136.

    Article  Google Scholar 

  7. Kirakosyan, G., Torgomyan, H., Malakyan, M., Bajinyan, S., & Trchounian, A. (2013). Protective effects of some amino acids synthesized derivatives and their chelates on Escherichia coli under X-ray irradiation. Indian Journal of Biochemistry and Biophysics, 50, 289–295.

    CAS  PubMed  Google Scholar 

  8. Byrne, R. T., Chen, S. H., Wood, E. A., Cabot, E. L., & Cox, M. M. (2014). Surviving extreme exposure to ionizing radiation: Escherichia coli genes and pathways. Journal of Bacteriology, 196, 3534–3545.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Confalonieri, F., & Sommer, S. (2011). Bacterial and archaeal resistance to ionizing radiation. Journal of Physics: Conference Series, 261, 012005.

    Google Scholar 

  10. Collins, C., Zhou, X. F., Wang, R., Barth, M. C., Jiang, T., Coderre, J. A., & Dedon, P. C. (2005). Differential oxidation of deoxyribose in DNA by gamma and alpha-particle radiation. Radiation Research, 163, 654–662.

    Article  CAS  PubMed  Google Scholar 

  11. Hortnagal, P., Perez, M. T., & Sommaruga, R. (2011). Contrasting effect of ultraviolet radiation on the growth efficiency of freshwater bacteria. Aquatic Ecology, 45, 125–136.

    Article  Google Scholar 

  12. Trampuz, A., Piper, K. E., Steckelberg, J. M., & Patel, R. (2006). Effect of gamma irradiation on viability and DNA of Staphylococcus epidermidis and Escherichia coli. Journal of Medical Microbiology, 55, 1271–1275.

    Article  CAS  PubMed  Google Scholar 

  13. Fernandez, R. O., & Pizarro, R. A. (1999). Peseudomonas aeruginosa UV-A-induced lethal effect: influence of salts, nutritional stress and pyocyanine. Journal of Photochemistry and Photobiology B, 50, 59–65.

    Article  CAS  Google Scholar 

  14. Tadevosyan, H., Kalantaryan, V., & Trchounian, A. (2008). Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics. Cell Biochemistry and Biophysics, 51, 97–103.

    Article  CAS  PubMed  Google Scholar 

  15. Torgomyan, H., Tadevosyan, H., & Trchounian, A. (2011). Extremely high frequency electromagnetic irradiation in combination with antibiotics enhances antibacterial effects on Escherichia coli. Current Microbiology, 62, 962–967.

    Article  CAS  PubMed  Google Scholar 

  16. Ingle, J. D. J., & Crouch, S. R. (1988). Spectrochemical analysis. New Jersey: Prentice Hall.

    Google Scholar 

  17. Torgomyan, H., & Trchounian, A. (2012). Escherichia coli membrane-associated energy-dependent processes and sensitivity toward antibiotics changes as responses to low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies. Cell Biochemistry and Biophysics, 62, 451–461.

    Article  CAS  PubMed  Google Scholar 

  18. Torgomyan, H., Hovnanyan, K., & Trchounian, A. (2013). Escherichia coli growth changes by the mediated effects after low-intensity electromagnetic irradiation of extremely high frequencies. Cell Biochemistry and Biophysics, 65, 445–454.

    Article  CAS  PubMed  Google Scholar 

  19. Gay, M., Fily, M., Genthon, C., Ferezzotti, M., Oerter, H., & Winther, J.-G. (2002). Snow grain-size measurements in Antarctica. Journal of Glaciology, 48, 527–535.

    Article  Google Scholar 

  20. Bransky, A., Korin, N., Nemirovski, Y., & Dinnar, U. (2007). Correlation between erythrocytes deformability and size: a study using a microchannel based cell analyzer. Microvascular Research, 73, 7–13.

    Article  PubMed  Google Scholar 

  21. Sharma, D., Sharma, R., Dua, S., & Ojha, V. N. (2012). Pitch measurements of 1D/2D gratings using optical profile and comparison with SEM/AFM. In AdMet 2012. NM, 003, 1–4.

    Article  CAS  Google Scholar 

  22. Stamps, D. (2012). Learn labview 2010/2011 fast: a primer for automatic data acquisition. Schroff Dev Corp: SDC Publications.

    Google Scholar 

  23. Massana, R., Gasol, J. M., Bjørnsen, P. K., Blackburn, N., Hagström, Å., Hietanen, S., et al. (1997). Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problems. Scientia Marina, 61, 397–407.

    Google Scholar 

  24. Szeliski R (2010) Computer Vision: Algorithms and Applications: Chapter 3 Image processing. Springer: 101-194.

  25. Fernandez, R. O., & Pizarro, R. A. (1996). Lethal effect induced in Pseudomonas aeruginosa exposed to ultraviolet-A radiation. Photochemistry and Photobiology, 64, 334–339.

    Article  CAS  PubMed  Google Scholar 

  26. Vermeulen, N., Keeler, W. J., Nandakumar, K., & Leung, K. T. (2008). The bactericidal effect of ultraviolet and visible light on Escherichia coli. Biotechnology and Bioengineering, 99, 550–556.

    Article  CAS  PubMed  Google Scholar 

  27. Torgomyan, H., & Trchounian, A. (2013). Bactericidal effects of low-intensity extremely high frequency electromagnetic field: an overview with phenomenon, mechanisms, targets and consequences. Critical Reviews in Microbiology, 39, 102–111.

    Article  CAS  PubMed  Google Scholar 

  28. Young, K. D. (2006). The selective value of bacterial shape. Microbiology and Molecular Biology Reviews, 70, 660–703.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Soghomonyan D, Trchounian K, Trchounian A (2016) Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria? Appl Microb Biotechnol. doi:10.1007/s00253-016-7538-0

  30. Sheryl, S. J., David, A. H., Lynette, C., & Scott, J. H. (2008). Morphological plasticity as a bacterial survival strategy. Nature Reviews Microbiology, 6, 162–168.

    Article  Google Scholar 

  31. Rodriguez, J. M., Edeskär, T., & Knutsson, S. (2013). Particle shape quantities and measurement techniques—a review. Electronic Journal of Geotechnical Engineering, 18, 169–198.

    Google Scholar 

  32. Jiang, H., Si, F., Margolin, W., & Sun, S. X. (2011). Mechanical control of bacterial cell shape. Biophysical Journal, 101, 327–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harris, D. R., Pollock, S. V., Wood, E. A., Goiffon, R. J., Klingele, A. J., Cabot, E. L., et al. (2009). Directed evolution of ionizing radiation resistance in Escherichia coli. Journal of Bacteriology, 191, 5240–5252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paul, N. D., & Gwynn-Jones, D. (2003). Ecological roles of solar UV radiation: towards an integrated approach. Trends Ecology Evolution, 18, 48–55.

    Article  Google Scholar 

  35. Bereza-Malcolm, L. T., Mann, G., & Franks, A. E. (2015). Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. ACS Synthetic Biology, 4, 535–546.

    Article  CAS  PubMed  Google Scholar 

  36. Popat, R., Cornforth, D. M., McNally, L., & Brown, S. P. (2015). Collective sensing and collective responses in quorum-sensing bacteria. Interface, 12(103), 20140882.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank to Drs. V. Ohanyan and D. Soghomonyan (Research Institute of Biology, Yerevan State University) for their help in some experiments and preparation of the manuscript. The manuscript has been edited by the highly qualified native English speaking editor at American Journal Experts (certificate key E546-8122-3CD1-D602-AAEF). This research was done by Basic Research Support of State Committee of Science, Ministry of Education and Science of Armenia (#10-3/9), and supported by International Science & Technology Center (ISTC) project (#A-2089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Trchounian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

The calculation of the UV dose was carried out according to the lamp parameters (see Materials and methods) and the distance from the target (15 cm). During 5 min of irradiation, the UV dose (I*1) was 15 J/cm2. The dose of UV rays was decreased to 7.5 J/cm2 during 10-min radiation (I*2) by reducing the lamp power from 250 W to 125 W. The length of the UV reflection (a) in a 15 cm distance was 45 cm.

The intensity of the rays falling on the bacterial layer (I01 and I02 for 5- and 10-min UV exposure, correspondingly) was calculated using the following equation:

$$ {\text{I}}_{01} = \frac{{{\text{I*}}_{1} }}{{{\text{a}}^{2} }} = \frac{15}{2025} = 7. 4 1 {\text{ mW}}/{\text{cm}}^{ 2} ;{\text{I}}_{02} = \frac{{{\text{I*}}_{2} }}{{{\text{a}}^{2} }} = \frac{7.5}{2025} = 3. 7 {\text{ mW}}/{\text{cm}}^{ 2.} $$

The intensity of the rays passing through the bacterial layer (I1 = 7.3 mW/cm2 and I2 = 3.6 mW/cm2 for 5 and 10 min UV exposure, respectively) was measured using a UV detector (UFI-25, Russia), detecting 250-400 nm rays and doses of 0.1-2000 mW/cm2.

The differences between the values of the UV falling and passing intensities (I1k and I2k for 5 (t1) and 10 min (t2) UV exposure, respectively), the surface area of the Petri dish (\( \Delta S = \pi r^{2} = 3.14 \times 4^{2} = 50.24 \)) and the bacterial mass (m = 10 g = 10−4 kg) were used for the UV-absorbed dose (D) calculations:

$$ D = \frac{{I_{k} \times \Delta S \times t}}{m} $$

Therefore, the calculations of the UV-absorbed doses during 5- and 10-min irradiation (D1 and D2, respectively) were

$$ D_{1} = \frac{{26.7 \times 10^{ - 6} {\text{W}}/cm^{2} \times 50.24\, cm^{2} \times 300 {\text{s}}}}{{10^{ - 4} }}{ = 40} . 2 4 {\text{ Ws/kg (Gy)}} $$
$$ D_{2} = \frac{{13.2 \times 10^{ - 6} {\text{W}}/cm^{2} \times 50.24\, cm^{2} \times 600 {\text{s}}}}{{10^{ - 4} }}{ = 39} . 8 {\text{ Ws/kg (Gy)}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margaryan, A., Badalyan, H. & Trchounian, A. Comparative Analysis of UV Irradiation Effects on Escherichia coli and Pseudomonas aeruginosa Bacterial Cells Utilizing Biological and Computational Approaches. Cell Biochem Biophys 74, 381–389 (2016). https://doi.org/10.1007/s12013-016-0748-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0748-3

Keywords

Navigation