Skip to main content
Log in

Improvements of Modified Wheat Protein Disulfide Isomerases with Chaperone Activity Only on the Processing Quality of Flour

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Wheat protein disulfide isomerase (wPDI) with oxidoreductase activity, isomerase activity, and chaperone activity catalyzes the formation of disulfide bonds in gluten in vitro; the addition of wild-type wPDI weakened yet the flour processing quality. To develop the potential flour improvers from wPDI, the modified wPDIs were prepared by the biological or chemical method, and their effects on the processing quality of flour in connection with bread making were investigated by farinograph, texture profile analysis, electrophoresis, size exclusion chromatography, and scanning electron microscopy. A truncated protein of wPDI, fragment AB with oxidoreductase, and isomerase activities only was firstly confirmed to exert deteriorative effects similar to wPDI on the dough and bread quality. Then other two modified wPDIs, mPDI and aPDI, were prepared by site-directed mutagenesis and alkylation, respectively. Both mPDI and aPDI considerably retained the chaperone activity of wPDI but completely lost oxidoreductase and isomerase activities. After adding the appropriate amount of mPDI or aPDI, the stability time of dough was significantly prolonged from 3.60 to 4.15 or 4.13 min, respectively. The enhanced gluten network matrix and decreased hardness and chewiness of bread further suggested that dough was strengthened by the treatment of mPDI or aPDI. Moreover, the formation of gluten network was facilitated by the modified wPDIs with chaperone activity only for the increase amount of gluten macropolymer and the decrease content of SDS-soluble gluten. Consequently, mPDI and aPDI are valid candidates of flour improvers in food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PDI:

Protein disulfide isomerase

hPDI:

Human protein disulfide isomerase

hPDIp:

Human pancreas-specific protein disulfide isomerase

wPDI:

Wheat protein disulfide isomerase

A:

Domain a of wPDI

AB:

Domains a and b of wPDI

mPDI:

Site-directed mutant wPDI cysteine residues in both active sites replaced by serine residues

aPDI:

Alkylated wPDI cysteine residues in both active sites alkylated by iodoacetamide

DS:

Degree of softening

WA:

Water absorption

DDT:

Dough development time

DST:

Dough stability time

FU:

Farinograph units

GMP:

Gluten macropolymer

GRAS:

Generally recognized as safe

ER:

Endoplasmic reticulum

RT-PCR:

Reverse transcription-polymerase chain reaction

Cys:

Cysteine

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

DTT:

Dithiothreitol

PBS:

Phosphate

EDTA:

Ethylene diamine tetraacetic acid

HMW-GS:

High molecular weight glutenin subunits

LMW-GS:

Low molecular weight glutenin subunits

RNase:

Ribonuclease

rRNase:

Inactive ribonuclease with reduced disulfide bonds

sRNase:

Inactive ribonuclease with scrambled disulfide bonds

2′3′-cCMP:

Cytidine 2′,3′-cyclic monophosphate

3′-CMP:

Cytidine 3′-monophosphate

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEM:

Scanning electron microscope

BSA:

Bovine serum albumin

TPA:

Texture profile analysis

References

  • AACC. (2000). Approved methods of the American Association of Cereal Chemists, 11th ed. Method 54–21. The Association: St. Paul, MN.

  • Anders, J. C., Parten, B. F., Petrie, G. E., Marlowe, R. L., & McEntire, J. E. (2003). Using amino acid analysis to determine absorptivity constants. BioPharm International (February), 2, 30–37.

    Google Scholar 

  • Boja, E. S., & Fales, H. M. (2001). Overalkylation of a protein digest with iodoacetamide. Analytical Chemistry, 73(15), 3576–3582.

    Article  CAS  Google Scholar 

  • Bonet, A., Rosell, C. M., Caballero, P. A., Gomez, M., Perez-Munuera, I., & Lluch, M. A. (2006). Glucose oxidase effect on dough rheology and bread quality: a study from macroscopic to molecular level. Food Chemistry, 99(2), 408–415.

    Article  CAS  Google Scholar 

  • Bueno, M. M., Thys, R. C. S., & Rodrigues, R. C. (2016a). Microbial enzymes as substitutes of chemical additives in baking wheat flour—part I: individual effects of nine enzymes on flour dough rheology. Food and Bioprocess Technology, 1–12.

  • Bueno, M. M., Thys, R. C. S., & Rodrigues, R. C. (2016b). Microbial enzymes as substitutes of chemical additives in baking wheat flour—part II: combined effects of nine enzymes on dough rheology. Food and Bioprocess Technology, 1–14.

  • Bulleid, N. J., & Freedman, R. B. (1988). Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature, 335(6191), 649–651.

    Article  CAS  Google Scholar 

  • Caballero, P. A., Gomez, M., & Rosell, C. M. (2007). Improvement of dough rheology, bread quality and bread shelf-life by enzymes combination. Journal of Food Engineering, 81(1), 42–53.

    Article  CAS  Google Scholar 

  • Cai, H., Wang, C. C., & Tsou, C. L. (1994). Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. Journal of Biological Chemistry, 269(40), 24550–24552.

    CAS  Google Scholar 

  • Colakoglu, A. S., & Özkaya, H. (2012). Potential use of exogenous lipases for DATEM replacement to modify the rheological and thermal properties of wheat flour dough. Journal of Cereal Science, 55(3), 397–404.

    Article  CAS  Google Scholar 

  • Every, D., Simmons, L., & Ross, M. (2006). Distribution of redox enzymes in millstreams and relationships to chemical and baking properties of flour. Cereal Chemistry, 83(1), 62–68.

    Article  CAS  Google Scholar 

  • Fu, X. M., & Zhu, B. T. (2010). Human pancreas-specific protein disulfide-isomerase (PDIp) can function as a chaperone independently of its enzymatic activity by forming stable complexes with denatured substrate proteins. Biochemical Journal, 429(1), 157–169.

    Article  CAS  Google Scholar 

  • Gerrard, J. A. (2002). Protein-protein crosslinking in food: methods, consequences, applications. Trends in Food Science & Technology, 13(12), 391–399.

    Article  CAS  Google Scholar 

  • Gibert, S., Bakalara, N., & Santarelli, X. (2000). Three-step chromatographic purification procedure for the production of a His-tag recombinant kinesin overexpressed in E. coli. Journal of Chromatography B: Biomedical Sciences and Applications, 737(1), 143–150.

    Article  CAS  Google Scholar 

  • Grynberg, A., Nicolas, J., & Drapron, R. (1977). Presence of a protein disulfide isomerase (EC 5.3. 4.1) in wheat germ. Comptes rendus hebdomadaires des seances de l’Academie des sciences. Serie D: Sciences Naturelles, 284(3), 235–238.

    CAS  Google Scholar 

  • Hatahet, F., & Ruddock, L. W. (2009). Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxidants & Redox Signaling, 11(11), 2807–2850.

    Article  CAS  Google Scholar 

  • Hayano, T., Hirose, M., & Kikuchi, M. (1995). Protein disulfide isomerase mutant lacking its isomerase activity accelerates protein folding in the cell. FEBS Letters, 377(3), 505–511.

    Article  CAS  Google Scholar 

  • Horibe, T., Iguchi, D., Masuoka, T., Gomi, M., Kimura, T., & Kikuchi, M. (2004). Replacement of domain b of human protein disulfide isomerase-related protein with domain b of human protein disulfide isomerase dramatically increases its chaperone activity. FEBS Letters, 566(1–3), 311–315.

    Article  CAS  Google Scholar 

  • Horton, R. M., Cai, Z., Ho, S. N., & Pease, L. R. (2013). Gene splicing by overlap extension. BioTechniques, 54(3), 528–535.

    Article  Google Scholar 

  • Johnson, J. C., Clarke, B. C., & Bhave, M. (2001). Isolation and characterisation of cDNAs encoding protein disulphide isomerases and cyclophilins in wheat. Journal of Cereal Science, 34(2), 159–171.

    Article  CAS  Google Scholar 

  • Joye, I. J., Lagrain, B., & Delcour, J. A. (2009a). Endogenous redox agents and enzymes that affect protein network formation during breadmaking—a review. Journal of Cereal Science, 50(1), 1–10.

    Article  CAS  Google Scholar 

  • Joye, I. J., Lagrain, B., & Delcour, J. A. (2009b). Use of chemical redox agents and exogenous enzymes to modify the protein network during breadmaking—a review. Journal of Cereal Science, 50(1), 11–21.

    Article  CAS  Google Scholar 

  • Kamata, Y., Ojima, E., Yamaki, M., & Ohtsubo, S. (2014). Increase in the viscosity of soft-flour batter by weak direct-current processing. Food Science and Technology Research, 20(4), 815–819.

    Article  CAS  Google Scholar 

  • Karala, A. R., & Ruddock, L. W. (2010). Bacitracin is not a specific inhibitor of protein disulfide isomerase. FEBS Journal, 277(11), 2454–2462.

    Article  CAS  Google Scholar 

  • Kim, J. H., Maeda, T., & Morita, N. (2006). Effect of fungal alpha-amylase on the dough properties and bread quality of wheat flour substituted with polished flours. Food Research International, 39(1), 117–126.

    Article  CAS  Google Scholar 

  • Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13(4), 345–351.

    Article  CAS  Google Scholar 

  • Koh, A., Nishimura, K., & Urade, R. (2010). Relationship between endogenous protein disulfide isomerase family proteins and glutenin macropolymer. Journal of Agricultural and Food Chemistry, 58(24), 12970–12975.

    Article  CAS  Google Scholar 

  • Kozlov, G., Maattanen, P., Thomas, D. Y., & Gehring, K. (2010). A structural overview of the PDI family of proteins. FEBS Journal, 277(19), 3924–3936.

    Article  CAS  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  Google Scholar 

  • Lee, J. Y., Beom, H. R., Altenbach, S. B., Lim, S. H., Kim, Y. T., Kang, C. S., et al. (2016). Comprehensive identification of LMW-GS genes and their protein products in a common wheat variety. Functional & Integrative Genomics, 16(3), 269–279.

    Article  CAS  Google Scholar 

  • Lerner, A., & Matthias, T. (2016). Comment on “Microbial enzymes as substitutes of chemical additives in baking wheat flour—part II: combined effects of nine enzymes on dough rheology [MM Bueno, RCS Thys and RC Rodrigues (2016), Food and bioprocess technology, 9 (9), 1598–1611]”. Food and Bioprocess Technology, 1–2. doi:10.1007/s11947-016-1794-y.

  • Li, Z. J., Deng, C., Li, H. F., Liu, C. H., & Bian, K. (2015). Characteristics of remixed fermentation dough and its influence on the quality of steamed bread. Food Chemistry, 179, 257–262.

    Article  CAS  Google Scholar 

  • Liang, R., Zhu, B. Q., Zhang, Y. B., Wang, H. Y., Li, C. Y., Su, Y. H., et al. (2004). The research of applying primer premier 5.0 to design PCR primer. Journal of Jinzhou Medical College, 25(6), 43–46.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  • Lutz, E., Wieser, H., & Koehler, P. (2012). Identification of disulfide bonds in wheat gluten proteins by means of mass spectrometry/electron transfer dissociation. Journal of Agricultural and Food Chemistry, 60(14), 3708–3716.

    Article  CAS  Google Scholar 

  • Miralbés, C. (2004). Quality control in the milling industry using near infrared transmittance spectroscopy. Food Chemistry, 88(4), 621–628.

    Article  Google Scholar 

  • Miś, A., Grundas, S., Dziki, D., & Laskowski, J. (2012). Use of farinograph measurements for predicting extensograph traits of bread dough enriched with carob fibre and oat wholemeal. Journal of Food Engineering, 108(1), 1–12.

    Article  Google Scholar 

  • NØrgaard, P., & Winther, J. R. (2001). Mutation of yeast Eug1p CXXS active sites to CXXC results in a dramatic increase in protein disulphide isomerase activity. Biochemistry Journal, 358, 269–274.

    Article  Google Scholar 

  • Osborn, S. (2014). Labelling relating to natural ingredients and additives. Advances in Food and Beverage Labelling: Information and Regulations, 207.

  • Pirneskoski, A., Klappa, P., Lobell, M., Williamson, R. A., Byrne, L., Alanen, H. I., et al. (2004). Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase. Journal of Biological Chemistry, 279(11), 10374–10381.

    Article  CAS  Google Scholar 

  • Pongjaruvat, W., Methacanon, P., Seetapan, N., Fuongfuchat, A., & Gamonpilas, C. (2014). Influence of pregelatinised tapioca starch and transglutaminase on dough rheology and quality of gluten-free jasmine rice breads. Food Hydrocolloids, 36, 143–150.

    Article  CAS  Google Scholar 

  • Quan, H., Fan, G., & Wang, C. C. (1995). Independence of the chaperone activity of protein disulfide isomerase from its thioredoxin-like active site. Journal of Biological Chemistry, 270(29), 17078–17080.

    Article  CAS  Google Scholar 

  • Roccia, P., Ribotta, P. D., Ferrero, C., Pérez, G. T., & León, A. E. (2012). Enzymes action on wheat–soy dough properties and bread quality. Food and Bioprocess Technology, 5(4), 1255–1264.

    Article  CAS  Google Scholar 

  • Schwaller, M., Wilkinson, B., & Gilbert, H. F. (2003). Reduction-reoxidation cycles contribute to catalysis of disulfide isomerization by protein-disulfide isomerase. Journal of Biological Chemistry, 278(9), 7154–7159.

    Article  CAS  Google Scholar 

  • Simonian, M. H., & Smith, J. A. (2006). Spectrophotometric and colorimetric determination of protein concentration. Current Protocols in Molecular Biology, 10–11.

  • Song, J. L., Quan, H., & Wang, C. C. (1997). Dependence of the anti-chaperone activity of protein disulphide isomerase on its chaperone activity. Biochemical Journal, 328, 841–846.

    Article  CAS  Google Scholar 

  • Steffolani, M. E., Ribotta, P. D., Pérez, G. T., & León, A. E. (2010). Effect of glucose oxidase, transglutaminase, and pentosanase on wheat proteins: relationship with dough properties and bread-making quality. Journal of Cereal Science, 51(3), 366–373.

    Article  CAS  Google Scholar 

  • Sudha, M., Vetrimani, R., & Leelavathi, K. (2007). Influence of fibre from different cereals on the rheological characteristics of wheat flour dough and on biscuit quality. Food Chemistry, 100(4), 1365–1370.

    Article  CAS  Google Scholar 

  • Sun, X. X., Dai, Y., Liu, H. P., Chen, S. M., & Wang, C. C. (2000). Contributions of protein disulfide isomerase domains to its chaperone activity. Biochimica et Biophysica Acta, 1481(1), 45–54.

    Article  CAS  Google Scholar 

  • Tian, R., Li, S. J., Wang, D. L., Zhao, Z., Liu, Y., & He, R. Q. (2004). The acidic C-terminal domain stabilizes the chaperone function of protein disulfide isomerase. Journal of Biological Chemistry, 279(47), 48830–48835.

    Article  CAS  Google Scholar 

  • Tian, G., Xiang, S., Noiva, R., Lennarz, W. J., & Schindelin, H. (2006). The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell, 124(1), 61–73.

    Article  CAS  Google Scholar 

  • Tosi, P. (2012). Trafficking and deposition of prolamins in wheat. Journal of Cereal Science, 56(1), 81–90.

    Article  CAS  Google Scholar 

  • Walker, K. W., Lyles, M. M., & Gilbert, H. F. (1996). Catalysis of oxidative protein folding by mutants of protein disulfide isomerase with a single active site cysteine. Biochemistry, 35(6), 1972–1980.

    Article  CAS  Google Scholar 

  • Wang, L., Wang, X., & Wang, C. C. (2015a). Protein disulfide-isomerase, a folding catalyst and a redox-regulated chaperone. Free Radical Biology and Medicine, 83, 305–313.

    Article  CAS  Google Scholar 

  • Wang, Q., Li, Y., Sun, F. S., Li, X. Y., Wang, P. D., Sun, J. T., et al. (2015b). Tannins improve dough mixing properties through affecting physicochemical and structural properties of wheat gluten proteins. Food Research International, 69, 64–71.

    Article  Google Scholar 

  • Wang, X. Y., Guo, X. N., & Zhu, K. X. (2016). Polymerization of wheat gluten and the changes of glutenin macropolymer (GMP) during the production of Chinese steamed bread. Food Chemistry, 201, 275–283.

    Article  CAS  Google Scholar 

  • Watanabe, E., Bell, A. E., & Brockway, B. E. (1998). The effect of protein disulphide isomerase on dough rheology assessed by fundamental and empirical testing. Food Chemistry, 61(4), 481–486.

    Article  CAS  Google Scholar 

  • Wilkinson, B., & Gilbert, H. F. (2004). Protein disulfide isomerase. Biochimica et Biophysica Acta, 1699(1–2), 35–44.

    Article  CAS  Google Scholar 

  • Yao, Y., Zhou, Y. C., & Wang, C. C. (1997). Both the isomerase and chaperone activities of protein disulfide isomerase are required for the reactivation of reduced and denatured acidic phospholipase A2. The EMBO Journal, 16(3), 651–658.

    Article  CAS  Google Scholar 

  • Zhang, C., Zhang, S., Lu, Z. X., Bie, X. M., Zhao, H. Z., Wang, X. M., et al. (2013). Effects of recombinant lipoxygenase on wheat flour, dough and bread properties. Food Research International, 54(1), 26–32.

    Article  Google Scholar 

  • Zhang, Y., Zhang, H., Ding, X., Cheng, L., Wang, L., Qian, H., et al. (2016). Purification and identification of antifreeze protein from cold-acclimated oat (Avena sativa L.) and the cryoprotective activities in ice cream. Food and Bioprocess Technology, 9, 1–10.

    Article  Google Scholar 

  • Zhu, J., Hao, P., Chen, G., Han, C., Li, X., Zeller, F. J., et al. (2014). Molecular cloning, phylogenetic analysis, and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.). BMC Plant Biology, 14, –260.

Download references

Acknowledgements

We appreciate financial support from the National Natural Science Foundation of China (grant numbers 31471691, 31171630, and 31130042), the Specialized Research Fund for the Doctoral Program of Higher Education of China (number 20130172110018), the Science and Technology Planning Project of Guangdong Province, China (grant number 2014A010107002), and the Science and Technology Planning Project of Foshan city, Guangdong Province, China (grant number 2015AG10011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-Qing Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Wang, J., Hou, Y. et al. Improvements of Modified Wheat Protein Disulfide Isomerases with Chaperone Activity Only on the Processing Quality of Flour. Food Bioprocess Technol 10, 568–581 (2017). https://doi.org/10.1007/s11947-016-1840-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1840-9

Keywords

Navigation