Skip to main content
Log in

Micropores and Their Relationship with Carotenoids Stability: A New Tool to Study Preservation of Solid Foods

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Carotenoids were encapsulated by means of coacervation by using a nanostructured material (NE) prepared with alginate/zeolite valfor 100 (1:3) and another that was non-nanostructured (AA) prepared with alginate at 2 %. The diameter of the AA and NE capsules was ≈1,200 μm. The NE protected the carotenoids at higher water activities (a w) than the AA. The highest retention of carotenoids (7,200 mg/kg dry solids for NE and 2,230 mg/kg dry solids for AA) was observed at water activities corresponding to the minimal integral entropy (≈0.35–0.45 for NE and ≈0.1 for AA). According to the enthalpy–entropy compensation, the water adsorption in the AA capsules was enthalpy driven at a w range of 0.115–0.973. However, the NE showed two zones: (1) at low a w (0.115–0.4), the water adsorption was controlled by entropy and (2) over an a w range of 0.4–0.973, controlled by enthalpy. Atomic force microscope images, moisture content corresponding to micropore volume and thermodynamic properties suggest that the adsorption process and the carotenoids stability were controlled by entropic barriers when the water molecules were adsorbed in the micropores (nanopores with pore diameter <2 nm). The practical use of these results is that increasing the number of micropores in the solid matrix of wall materials is possible to improve the preservation of nutrients and functional substances during processing and storage of foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AA:

Capsules of ammonium–calcium alginate

A 472 :

Absorption at 472 nm

A 508 :

Absorption at 508 nm

a w :

Water activity

a*:

Color parameter (red)

b*:

Color parameter (yellow)

B :

Constant related to the microporous structure of the adsorbent

C :

Maximum water adsorption by weakly binding sites (in gram water per 100 g dry solids) in Equation (1)

C R :

Red isochromic carotenoid pigment content (in milligram per kilogram dry solids)

C Y :

Yellow isochromic carotenoid pigment content (in milligram per kilogram dry solids)

C T :

Total carotenoid content

D :

Constant of adsorption in Eq. (5)

H V(T):

Integral molar heat of adsorption of water (in joule per mole)

H 0v (T):

Heat of condensation of pure water (in joule per mole)

K 'a :

Maximum water adsorption by strongly binding sites (in gram water per 100 g dry solids) in Equation 1

K a :

A dimensional measure of attraction of the primary sites for the adsorbate

K ' b :

Maximum water adsorption at secondary sites (in gram water per 100 g dry solids) in Equation 1

k b :

A dimensional measure of attraction of the secondary sites for the adsorbate

M :

Equilibrium moisture content

m :

Number of data pairs [(ΔH int)T,(ΔS int)T]

Mci :

Calculated moisture content

Mei :

Experimental moisture content

N :

Number of experimental data

n :

Number of isotherms used

N 1 :

Moles of adsorbed water

NE:

Capsules with ZV and ammonium–calcium alginate

P :

Mean relative deviation modulus (in percent)

P v :

Partial pressure of water in a food (in newton per square meter)

P 0v :

Vapour pressure of water at the same temperature (in newton per square meter)

R :

Universal gas constant (in joule per mole kelvin)

S :

Total entropy of adsorbed water molecules (in joule per mole kelvin)

S L :

Molar entropy of pure liquid water in equilibrium with vapour (in joule per mole kelvin)

S s = S/N 1 :

Integral entropy of water adsorbed in the adsorbent (in joule per mole kelvin)

T :

Sorption isotherm temperature (in kelvin)

T B :

Isokinetic temperature (in kelvin)

T hm :

Harmonic mean temperature (in kelvin)

V TB :

Standard error of the isokinetic temperature

W ap :

Molecular weight of the adsorbent

W v :

Molecular weight of the water

X :

Moisture content (in gram of water per 100 g dry solids)

X 0 :

Moisture content corresponding to the micropore volume (in gram of water per 100 g dry solids)

ZV:

Zeolite valfor 100

φ :

Surface potential (in joule per square meter)

G :

Change in Gibbs free energy (in joule per mole)

G B :

Change in Gibbs free energy at isokinetic temperature (in joule per mole)

H int :

Change in enthalpy (in joule per mole)

\( {\overline{\varDelta H}}_{\operatorname{int}} \) :

Average enthalpy

∆Sint :

Change in entropy (in joule per mole kelvin)

\( {\overline{\varDelta S}}_{\operatorname{int}} \) :

Average entropy

μ a :

Chemical potential of the adsorbent participating in the condensed phase (in joule per mole)

μ ap :

Chemical potential of the pure adsorbent (in joule per mole)

References

  • Azuara, E., & Beristain, C. I. (2006). Enthalpic and entropic mechanisms related to water sorption of yogurt. Drying Technology, 24(11), 1–7.

    Article  Google Scholar 

  • Azuara, E., & Beristain, C. I. (2007). Estudio termodinámico y cinético de la adsorción de agua en proteína de suero de leche. Revista Mexicana de Ingeniería Química, 6(3), 359–365.

    Google Scholar 

  • Babu, V. R., Sairam, M., Hosamani, K. M., & Aminabhavi, T. M. (2007). Preparation of sodium alginate–methylcellulose blend microspheres for controlled release of nifedipine. Carbohydrate Polymers, 69(2), 241–250.

    Article  Google Scholar 

  • Bajpai, S. K., Chand, N., & Chaurasia, V. (2012). Nano zinc oxide-loaded calcium alginate films with potential antibacterial properties. Food and Bioprocess Technology, 5(5), 1871–1881.

    Article  CAS  Google Scholar 

  • Beristain, C., & Azuara, E. (1990). Estabilidad máxima en productos deshidratados. Ciencia, 41(3), 229–236.

    Google Scholar 

  • Beristain, C. I., García, H. S., & Azuara, E. (1996). Enthalpy–entropy compensation in food vapor adsorption. Journal of Food Engineering, 30(3–4), 405–415.

    Article  Google Scholar 

  • Braccini, I., & Pérez, S. (2001). Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules, 2(4), 1089–1096.

    Article  CAS  Google Scholar 

  • Brunauer, S., Deming, L. S., & Teller, E. (1940). On a theory of van der Waals adsorption of gases. Journal of the American Chemical Society, 62(7), 1723–1732.

    Article  CAS  Google Scholar 

  • Chodera, J. D., & Mobley, D. L. (2013). Entropy–enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Annual Review of Biophysics, 42(1), 1–19.

    Google Scholar 

  • D’Arcy, R. L., & Watt, I. C. (1970). Analysis of sorption isotherms of non-homogeneous sorbents. Transactions of the Faraday Society, 66(1), 1236–1245.

    Article  Google Scholar 

  • Domínguez, I. L., Azuara, E., Vernon-Carter, E. J., & Beristain, C. I. (2007). Thermodynamic analysis of the effect of water activity on the stability of macadamia nut. Journal of Food Engineering, 81(3), 566–571.

    Article  Google Scholar 

  • Dubinin, M. M., Zawierina, E. D., & Raduszkiewicz, L. W. (1947). Sorption and structure of active coals. I. Research on adsorption of organic vapors. Zurnal Fiziczeskoj Chimii, 21, 1351–1362.

    CAS  Google Scholar 

  • Flores, E., Pascual, L., Azuara, E., Gutiérrez, G. & Alamilla, L. (2007) Ventajas del modelo de D’Arcy-watt para describir la sorción de vapor de agua en alimentos y otros materiales. In Proceedings of 4º Congreso Internacional de Ingeniería en Movimiento. Puebla, México. March 5–10.

  • Flores, E., Beristain, C., Vernon-Carter, E., Gutiérrez, G., & Azuara, E. (2009). Enthalpy–entropy compensation and water transfer mechanism in osmotically dehydrated agar gel. Drying Technology, 27(9), 999–1009.

    Article  Google Scholar 

  • Goldman, M., Horev, B., & Saguy, I. (1983). Discoloration of b-carotene in model systems simulating dehydrate foods. Mechanism and kinetic principles. Journal of Food Science, 48(4), 751–754.

    Article  CAS  Google Scholar 

  • Grant, G., Morris, E., Rees, D., Smith, P., & Thom, D. (1973). Biological interactions between polysaccharide sand divalent cations: the egg-box model. FEBS Letters, 32(1), 195–198.

    Article  CAS  Google Scholar 

  • Hill, P. E., & Rizvi, S. S. H. (1982). Thermodynamic parameters and storage stability of drum dried peanut flakes. Lebensmittel-Wissenschaft und Technologie, 15(4), 185–190.

    Google Scholar 

  • Hirano, T., Li, W., Abrams, L., Krusic, P., Ottaviani, M., & Turro, N. (2000). Supramolecular steric effects as the means of making reactive carbon radicals persistent. quantitative characterization of the external surface of MFI zeolites through a persistent radical probe and a Langmuir adsorption isotherm. Journal of Organic Chemistry, 65(5), 1319–1330.

    Article  CAS  Google Scholar 

  • Hornero, M. D., & Mínguez, M. M. I. (2001). Rapid spectrophotometric determination of red and yellow isochromic carotenoid fractions in paprika and re papper oleoresins. Journal of Agriculture and Food Chemistry, 49(8), 3584–3588.

    Article  Google Scholar 

  • Hui, K., & Chao, C. (2008). Methane emissions abatement by multi-ion exchanged zeolite: a prepared from both commercial-grade zeolite and coal fly ash. Environmental Science & Technology, 42(20), 7392–7397.

    Article  CAS  Google Scholar 

  • Hui, K., Hui, K., & Seong Kon, L. (2009). A novel and green approach to produce nano-porous materials zeolite a and MCM-41 from coal fly ash and their applications in environmental protection. World Academy of Science Engineering and Technology, 53(1), 174–184.

    Google Scholar 

  • Hummer, G., Rasaiah, J., & Noworyta, J. (2001). Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 414(6860), 188–190.

    Article  CAS  Google Scholar 

  • Iiyama, T., Nishikawa, K., Suzuki, T., & Kaneko, K. (1997). Study of the structure of a water molecular assembly in a hydrophobic nanospace at low temperature with in situ X-ray diffraction. Chemical Physics Letters, 274(1–3), 152–158.

    Article  CAS  Google Scholar 

  • IUPAC. (1985). Reporting physisorption date. Pure and Applied Chemistry, 57, 603.

    Article  Google Scholar 

  • Johnson, F. A., Craig, D. Q. M., & Mercer, A. D. (1997). Characterization of the block structure and molecular weight of sodium alginates. Journal of Pharmacy and Pharmacology, 49(7), 639–643.

    Article  CAS  Google Scholar 

  • Krug, R. R., Hunter, W. G., & Grieger, R. A. (1976). Enthalpy–entropy compensation. 2—Separation of the chemical from the statistical effect. Journal of Physical Chemistry, 80(21), 2341–2351.

    Article  CAS  Google Scholar 

  • Labuza, T. P. (1980). Enthalpy/entropy compensation in food reactions. Food Technology, 34(2), 67–77.

    CAS  Google Scholar 

  • Labuza, T., McNally, L., Gallagher, D., Hawkes, J., & Hurt, F. (1972). Stability of intermediate moisture foods. Lipid oxidation. Journal of Food Science, 37(1), 154–159.

    Article  CAS  Google Scholar 

  • Lang, K. W., McCune, T. D., & Steinberg, M. P. (1981). Proximity equilibration cell for rapid determination of sorption isotherms. Journal of Food Science, 46(3), 936–938.

    Article  CAS  Google Scholar 

  • Lavelli, V., Zanoni, B., & Zaniboni, A. (2007). Effect of water activity on carotenoid degradation in dehydrated carrots. Food Chemistry, 104(4), 1705–1711.

    Article  CAS  Google Scholar 

  • Leffler, J. E. (1955). The enthalpy–entropy relationship and its implications for organic chemistry. Journal of Organic Chemistry, 20(9), 1202–1231.

    Article  CAS  Google Scholar 

  • Lomauro, C. J., Bakshi, A. S., & Labuza, T. P. (1985). Evaluation of food moisture sorption isotherm equations, Part I. Fruit, vegetable and meat products. Lebensmittel-Wissenchaft and Technology, 18(2), 111–117.

    Google Scholar 

  • Martins, S., Sarmento, B., Souto, E. B., & Ferreira, D. C. (2007). Insulin-loaded alginate microspheres for oral delivery—effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydrate Polymers, 69(4), 725–731.

    Article  CAS  Google Scholar 

  • McMinn, W. A. M., Al-Muhtaseb, A. H., & Magee, T. R. A. (2005). Enthalpy–entropy compensation in sorption phenomena of starch materials. Food Research International, 38(5), 505–510.

    Article  CAS  Google Scholar 

  • Morris, E., Rees, D., Thom, D., & Boyd, J. (1978). Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation. Carbohydrate Research, 66(1), 145–154.

    Article  CAS  Google Scholar 

  • Ng, E., & Mintova, S. (2008). Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous and Mesoporous Materials, 114(1), 1–26.

    Article  CAS  Google Scholar 

  • Onsøyen, E. (2001). Alginate Production, Composition, Physicochemical Properties, Physiological Effects, Safety, and Food Applications. In S. Sungsoo & M. Dreher (Eds.), Handbook of dietary fiber. New York: Taylor & Francis.

    Google Scholar 

  • Othmer, D. F. (1940). Correlating vapor pressure and latent heat data. A new plot. Industrial and Engineering Chemistry, 32(6), 841–856.

    Article  CAS  Google Scholar 

  • Papaioannou, D., Katsoulos, P. D., Panousis, N., & Karatzias, H. (2005). The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases: a review. Microporous and Mesoporous Materials, 84(1–3), 161–170.

    Article  CAS  Google Scholar 

  • Rizvi, S. S. H., & Benado, A. L. (1984). Thermodynamics properties of dehydrated food. Food Technology, 38(3), 83–92.

    CAS  Google Scholar 

  • Rouquerol, F., Rouquerol, J. & Sing, K. (1999) Adsorption by powders and porous solids. Elsevier, pp(20).

  • Rudra, S. G., Sarkar, B. C., & Shivhare, U. S. (2008). Thermal degradation kinetics of chlorophyll in pureed coriander leaves. Food Bioprocess Technology, 1(1), 91–99.

    Article  Google Scholar 

  • Topuz, A. (2008). A novel approach for color degradation kinetics of paprika as a function of water activity. LWT- Food Science and Technology, 41(9), 1672–1677.

    Article  CAS  Google Scholar 

  • Topuz, A., Hao, F., & Mosbah, K. (2009). The effect of drying method and storage on color characteristics of paprika. LWT- Food Science and Technology, 42(10), 1667–1673.

    Article  CAS  Google Scholar 

  • Tsami, E., Marinos-Kouris, D., & Maroulis, Z. (1990). Water sorption isotherms of raisins, currants, figs, prunes and apricots. Journal of Food Science, 55(6), 1594–1625.

    Article  Google Scholar 

  • Wexler, A. (1976). Vapor pressure formulation for water in range 0 to 100 °C. A revision. Journal of Research of the National Bureau of Standards A Physics and Chemistry, 80(5), 775–785.

    Article  Google Scholar 

  • Yanagi, K., Miyata, Y., & Kataura, H. (2006). Highly stabilized b-carotene in carbon nanotubes, advanced. Material, 18(4), 437–441.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebner Azuara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascual-Pineda, L.A., Flores-Andrade, E., Alamilla-Beltrán, L. et al. Micropores and Their Relationship with Carotenoids Stability: A New Tool to Study Preservation of Solid Foods. Food Bioprocess Technol 7, 1160–1170 (2014). https://doi.org/10.1007/s11947-013-1162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1162-0

Keywords

Navigation