Skip to main content
Log in

The Production, Characterization, and the Stability of Carotenoids Loaded in Lipid-Core Nanocapsules

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The use of carotenoids in foods is limited due to their poor solubility in water-rich matrices, and the nanoencapsulation emerges as an alternative to allowing the solubilization and to protect the carotenoids against degradation. The aims of this study were to produce, by the interfacial deposition of the preformed polymer, to characterize, and evaluate the stability of nanocapsules obtained from a blend of β-carotene, α-carotene, and lutein (BALNs) and nanocapsules of synthetic β-carotene (BNs). The encapsulation efficiency, transmission electron microscopy, and the logarithm of the distribution of the coefficient of the BALNs and BNs, with 26 μg/mL of carotenoids, were performed after preparation. During 100 days of storage (4 °C) for the BALNs and BNs, the carotenoids retention, hydrogen potential, color, particle diameter, and the zeta potential were analyzed. The z-average and zeta potential after 100 days of storage for the BALNs and BNs were, respectively, 166.53 ± 4.71 nm/−18.37 ± 2.06 mV and 190.90 ± 7.87 nm/−9.08 ± 1.23 mV. At the end of storage, the β-carotene content was 67.62 ± 7.77 % (BALNs) and 11.69 ± 1.65 % (BNs). The β-carotene retention in the BALNs was higher than in the BNs probably due to the synergism that occurs among the compounds. Regardless of the decrease in the pH values and the b* coordinate, the formulations of the BALNs and BNs were considered physically stable during the storage. Nevertheless, beyond the physical stability, the BALNs presented a satisfactory carotenoid retention at end of storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida, J. S., Jezur, L., Fontana, M. C., Paese, K., Silva, C. B., Pohlmann, A. R., Guterres, S. S., & Beck, R. C. R. (2009). Oil-based nanoparticles containing alternative vegetable oils (grape seed oil and almond kernel oil): preparation and characterization. Latin American Journal of Pharmacy, 28, 165–172.

    CAS  Google Scholar 

  • Aparicio-Ruiz, R., Mínguez-Mosquera, M. I., & Gandul-Rojas, B. (2011). Thermal degradation kinetics of lutein, β-carotene and β-cryptoxanthin in virgin olive oils. Journal of Food Composition and Analysis, 24, 811–820.

    Article  CAS  Google Scholar 

  • Bucić-Kojić, A., Planinić, M., Tomas, S., Jakobek, L., & Šeruga, M. (2009). Influence of solvent and temperature on extraction of phenolic compounds from grape seed, antioxidant activity and colour of extract. International Journal of Food Science and Technology, 44, 2394–2401.

    Article  Google Scholar 

  • Can, E., Udenir, G., Kanneci, A. I., Kose, G., & Bucak, S. (2011). Investigation of PLLA/PCL blends and paclitaxel release profiles. AAPS PharmSciTech, 12, 1442–1453.

    Article  CAS  Google Scholar 

  • Cao-Hoang, L., Fougère, R., & Waché, Y. (2011). Increase in stability and change in supramolecular structure of β-carotene through encapsulation into polylactic acid nanoparticles. Food Chemistry, 124, 42–49.

    Article  Google Scholar 

  • Contri, R. V., Ribeiro, K. L. F., Fiel, L. A., Pohlmann, A. R., & Guterres, S. S. (2013). Vegetable oils as core of cationic polymeric nanocapsules: influence on the physicochemical properties. Journal of Experimental Nanoscience, 8, 913–924.

    Article  CAS  Google Scholar 

  • Couvreur, P., Barrat, G., Fattal, E., Legrand, P., & Vauthier, C. (2002). Nanocapsule technology: a review. Critical Reviews in Therapeutic Drug Carrier Systems, 19, 99–134.

    Article  CAS  Google Scholar 

  • Das, S., & Bera, D. (2013). Mathematical model study on solvent extraction of carotene from carrot. International Journal of Research in Engineering and Technology, 2, 343–349.

    Google Scholar 

  • Fathi, M., Martín, A., & Mcclements, D. J. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in Food Science & Technology, 39, 18–39.

    Article  CAS  Google Scholar 

  • Fiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6, 466–488.

    Article  Google Scholar 

  • Hal, D. A. V., Bouwstra, J. A., Rensen, A. V., Jeremiasse, E., Vringer, T., & Junginger, H. E. (1996). Preparation and characterization of nonionic surfactant vesicles. Journal of Colloid and Interface Science, 178, 263–273.

    Article  Google Scholar 

  • Ilyasoglu, H., & El, S. N. (2014). Nanoencapsulation of EPA/DHA with sodium caseinateegum arabic complex and its usage in the enrichment of fruit juice. Food Science and Technology, 56, 461–468.

    CAS  Google Scholar 

  • Jäger, E., Venturini, C. G., Poletto, F. S., Colomé, L. M., Pohlmann, J. P. U., Bernardi, A., Battastini, A. M. O., Guterres, S. S., & Pohlmann, A. R. (2009). Sustained release from lipid-core nanocapsules by varying the core viscosity and the particle surface area. Journal of Biomedical Nanotechnology, 5, 130–140.

    Article  Google Scholar 

  • Jin, H., Xia, F., Jiang, C., Zhao, Y., & He, L. (2009). Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical antisolvent. Chinese Journal of Chemical Engineering, 17, 672–677.

    Article  CAS  Google Scholar 

  • Liang, R., Shoemaker, C. F., Yang, X., Zhong, F., & Huang, Q. (2013). Stability and bioaccessibility of β-Carotene in nanoemulsions stabilized by modified starches. Journal of Agricultural and Food Chemistry, 61, 1249–1257.

    Article  CAS  Google Scholar 

  • Liao, S., Chan, C. K., & Ramakrishna, S. (2008). Stem cells and biomimetic materials strategies for tissue engineering. Materials Science and Engineering: C, 28, 1189–1202.

    Article  CAS  Google Scholar 

  • Linnewiel-Hermoni, K., Khanin, M., Danielenko, M., Zango, G., Amosi, Y., Levy, J., & Sharoni, Y. (2015). The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Archives of Biochemistry and Biophysics, 572, 28–35.

    Article  CAS  Google Scholar 

  • Lobato, K. B. S., Paese, K., Forgearini, J. C., Guterres, S. S., Jablonski, A., & Rios, A. O. (2013). Characterisation and stability evaluation of bixin nanocapsules. Food Chemistry, 141, 3906–3912.

    Article  CAS  Google Scholar 

  • Mercadante, A. Z., & Rodriguez-Amaya, D. B. (1998). Effects of ripening, cultivar differences, and processing on the carotenoid composition of mango. Journal of Agricultural and Food Chemistry, 46, 128–130.

    Article  CAS  Google Scholar 

  • Mínguez-Mosquera, M. I., Hornero-Méndez, D., & Pérez-Gálvez, A. (2007). Analysis of carotenoids and provitamin A in functional foods. In W. J. Hurst (Ed.), Methods of analysis in functional foods and added nutraceuticals (pp. 277–335). Boca Raton: CRC Press.

    Google Scholar 

  • Mortensen, A. (2006). Carotenoids and other pigments as natural colorants. Pure and Applied Chemistry, 78, 1477–1491.

    Article  CAS  Google Scholar 

  • Mustafa, A., Trevino, L. M., & Turner, C. (2012). Pressurized hot ethanol extraction of carotenoids from carrot by-products. Molecules, 17, 1809–1818.

    Article  CAS  Google Scholar 

  • Niizu, P. Y., & Rodriguez-Amaya, D. B. (2005). New data on the carotenoid composition of raw salad vegetables. Journal of Food Composition and Analysis, 18, 739–749.

    Article  CAS  Google Scholar 

  • Oliveira, C. P., Venturini, C. G., Donida, B., Poletto, F. S., Guterres, I. S., & Pohlmann, A. R. (2013). An algorithm to determine the mechanism of drug distribution in lipid-core nanocapsule formulations. Soft Matter, 9, 1141–1150.

    Article  CAS  Google Scholar 

  • Paese, K., Jäger, A., Pinto, E. F., Rossi-Bergmann, B., Pohlmann, A. R., & Guterres, S. S. (2009). Semisolid formulation containing a nanoencapsulated sunscreen: effectiveness, in vitro photostability and immune response. Journal of Biomedical Nanotechnology, 5, 1–7.

    Article  Google Scholar 

  • Patravale, V. B., Date, A. A., & Kulkarni, R. M. (2004). Nanosuspensions: a promising drug delivery strategy. Journal of Pharmaceutics & Pharmacology, 56, 827–840.

    Article  CAS  Google Scholar 

  • Pereira, M. C., Hill, L. E., Zambiazi, R. C., Talcott, S. M., Talcott, S., & Gomes, C. L. (2015). Nanoencapsulation of hydrophobic phytochemicals using poly (DL-lactide-co-glycolide) (PLGA) for antioxidant and antimicrobial delivery applications: Guabiroba fruit (Campomanesia xanthocarpa O. Berg) study. LWT - Food Science and Technology, 63, 100–107.

    Article  CAS  Google Scholar 

  • Qian, C., Decker, E. A., Xiao, H., & Mcclements, D. J. (2012). Physical and chemical stability of b-carotene-enriched nanoemulsions: influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry, 132, 1221–1229.

    Article  CAS  Google Scholar 

  • Qian, C., Decker, E. A., Xiao, H., & Mcclements, D. J. (2013). Impact of lipid nanoparticle physical state on particle aggregation and β-carotene degradation: potential limitations of solid lipid nanoparticles. Food Research International, 52, 342–349.

    Article  CAS  Google Scholar 

  • Rebecca, L. J., Sharmila, S., Das, M. P., & Seshiah, C. (2014). Extraction and purification of carotenoids from vegetables. Journal of Chemical and Pharmaceutical Research, 6, 594–598.

    CAS  Google Scholar 

  • Ribeiro, H. S., Chu, B. S., Ichikawa, S., & Nakajima, M. (2008). Preparation of nanodispersions containing b-carotene by solvent displacement method. Food Hydrocolloids, 22, 12–17.

    Article  CAS  Google Scholar 

  • Rodriguez-Amaya, D. B., Kimura, M., Godoy, H. T., & Amaya-Farfan, J. (2008). Updated Brazilian database on food carotenoids: factors affecting carotenoid composition. Journal of Food Composition and Analysis, 21, 445–463.

    Article  CAS  Google Scholar 

  • Santos, P. P., Paese, K., Guterres, S. S., Pohlmann, A. R., Costa, T. H., Jablonski, A., Flôres, S. H., & Rios, A. O. (2015). Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study. Journal of Nanoparticle Research, 17, 1–11.

    Article  Google Scholar 

  • Silva, H. D., Cerqueira, M. A., Souza, B. W. S., Ribeiro, C., Avides, M. C., Quintas, M. A. C., Coimbra, J. S. R., Carneiro-da-Cunha, M. G., & Vicente, A. A. (2011). Nanoemulsions of β-carotene using a high-energy emulsification-evaporation technique. Journal of Food Engineering, 102, 130–135.

    Article  CAS  Google Scholar 

  • Stahl, W., & Sies, H. (2003). Antioxidant activity of carotenoids. Molecular Aspects of Medicine, 24, 345–351.

    Article  CAS  Google Scholar 

  • Surles, R. L., Weng, N., Simon, P. W., & Tanumihardjo, S. A. (2004). Carotenoid profiles and consumer sensory evaluation of specialty carrots (Daucus carota, L.) of various colors. Journal of Agricultural and Food Chemistry, 52, 3417–3421.

    Article  CAS  Google Scholar 

  • Tan, C. P., & Nakajima, M. (2005). β-Carotene nanodispersions: preparation, characterization and stability evaluation. Food Chemistry, 92, 661–671.

    Article  CAS  Google Scholar 

  • Tiede, K., Boxall, A. B. A., Tear, S. P., Lew, J., David, H., & Hasselöv, M. (2008). Detection and characterization of engineered nanoparticles in food and the environment. Food Additives & Contaminants, 25, 795–821.

    Article  CAS  Google Scholar 

  • U.S. Institute of Medicine. (2001). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press.

    Google Scholar 

  • Venturini, C. G., Jäger, E., Oliveira, C. P., Bernardi, A., Battastini, A. M. O., Guterres, S. S., & Pohlmann, A. R. (2011). Formulation of lipid core nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 375, 200–208.

    Article  CAS  Google Scholar 

  • Yi, J., Lam, T. I., Yokoyama, W., Cheng, L. W., & Zhong, F. (2015). Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells. Food Hydrocolloids, 43, 31–40.

    Article  CAS  Google Scholar 

  • Yin, L. J., Chu, B. S., Kobayashi, I., & Nakajima, M. (2009). Performance of selected emulsifiers and their combinations in the preparation of β-carotene nanodispersions. Food Hydrocolloids, 23, 1617–1622.

    Article  CAS  Google Scholar 

  • Zakaria-Rungkat, F., Djaelani, M., Setiana, M., Rumondang, E., & Nurrochmah, E. (2000). Carotenoid bioavailability of vegetables and carbohydrate-containing foods measured by retinol accumulation in rat livers. Journal of Food Composition and Analysis, 13, 297–310.

    Article  CAS  Google Scholar 

  • Zimet, P., & Livney, Y. D. (2009). Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for u-3 polyunsaturated fatty acids. Food Hydrocolloids, 23, 1120–1126.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), Fundacão de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Brazil), and Empresa Brasileira de Pesquisa Agropecuária (Embrapa, Brazil) for the financial support provided for this research and Eletronic Microscope Center (CME) of Federal University of Rio Grande do Sul UFRGS for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro de Oliveira Rios.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.M., Nora, L., Cantillano, R.F.F. et al. The Production, Characterization, and the Stability of Carotenoids Loaded in Lipid-Core Nanocapsules. Food Bioprocess Technol 9, 1148–1158 (2016). https://doi.org/10.1007/s11947-016-1704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1704-3

Keywords

Navigation