Skip to main content

Advertisement

Log in

Imaging the Role of GABA in Movement Disorders

  • Neuroimaging (DJ Brooks, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. This paper reviews the current knowledge derived from positron emission tomography and single photon emission tomography studies quantifying GABAA receptor binding in movement disorders of extrapyramidal origin, focusing on essential tremor (ET), Parkinsonism (idiopathic PD and atypical parkinsonian syndromes), dystonia, and Huntington’s disease (HD). In ET, there is evidence to suggest a specific disturbance at the level of the GABAA receptor and impairment of GABAergic inhibition to be a driving force for the development of rhythmic overactivity in cerebello-thalamo-cortical networks. In dystonia, GABAA receptor binding studies have been relevant for unraveling pathophysiological mechanisms causing sensorimotor disinhibition leading to dystonic movements. The role of GABA in idiopathic PD and atypical parkinsonian syndromes is less clear, despite the fact that GABAA receptors are expressed on virtually all striatal neurons and that GABA exerts important inhibitory influences upon basal outflow pathways. In HD, reductions of GABAA receptor have been reported in the basal ganglia but were found to be less extensive compared with concomitant metabolic reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Duncan J. The current status of neuroimaging for epilepsy. Curr Op Neurol. 2009;22:179–84. doi:10.1097/WCO.0b013e328328f260.

    Google Scholar 

  2. Heiss WD, Kracht LW, Thiel A, Grond M, Pawlik G. Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting tissue outcome in patients with cerebral ischaemia. Brain. 2001;124(Pt 1):20–9.

    Article  PubMed  CAS  Google Scholar 

  3. Beuthien-Baumann B, Holthoff VA, Rudolf J. Functional imaging of vegetative state applying single photon emission tomography and positron emission tomography. Neuropsychol Rehabil. 2005;15:276–82. doi:10.1080/09602010443000290.

    Article  PubMed  Google Scholar 

  4. Shiga T, Ikoma K, Katoh C, Isoyama H, Matsuyama T, Kuge Y, et al. Loss of neuronal integrity: a cause of hypometabolism in patients with traumatic brain injury without MRI abnormality in the chronic stage. Eur J Nucl Med Mol Imaging. 2006;33:817–22. doi:10.1007/s00259-005-0033-y.

    Article  PubMed  Google Scholar 

  5. Wicks P, Turner MR, Abrahams S, Hammers A, Brooks DJ, Leigh PN, et al. Neuronal loss associated with cognitive performance in amyotrophic lateral sclerosis: an (11C)-flumazenil PET study. Amyotroph Lateral Scler. 2008;9:43–9. doi:10.1080/17482960701737716.

    Article  PubMed  CAS  Google Scholar 

  6. Turner MR, Hammers A, Al-Chalabi A, Shaw CE, Andersen PM, Brooks DJ, et al. Cortical involvement in 4 cases of primary lateral sclerosis using [(11)C]-flumazenil PET. J Neurol. 2007;254:1033–6. doi:10.1007/s00415-006-0482-7.

    Article  PubMed  Google Scholar 

  7. Pascual B, Prieto E, Arbizu J, Marti-Climent JM, Penuelas I, Quincoces G, et al. Decreased carbon-11-flumazenil binding in early Alzheimer's disease. Brain. 2012;135(Pt 9):2817–25. doi:10.1093/brain/aws210.

    Article  PubMed  Google Scholar 

  8. Perani D, Garibotto V, Moresco RM, Ortelli P, Corbo M, Fazio F, et al. PET evidence of central GABAergic changes in stiff-person syndrome. Mov Disord. 2007;22:1030–3.

    Article  PubMed  Google Scholar 

  9. Olsen RW. The GABA postsynaptic membrane receptor-ionophore complex. Site of action of convulsant and anticonvulsant drugs. Mol Cell Biochem. 1981;39:261–79.

    Article  PubMed  CAS  Google Scholar 

  10. Ribak CE, Vaughn JE, Roberts E. The GABA neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry. J Comp Neurol. 1979;187(2):261–83. doi:10.1002/cne.901870203.

    Article  PubMed  CAS  Google Scholar 

  11. • Duncan NW, Gravel P, Wiebking C, Reader AJ, Northoff G. Grey matter density and GABAA binding potential show a positive linear relationship across cortical regions. Neuroscience. 2013;235:226–31. doi:10.1016/j.neuroscience.2012.12.075. This paper relates [18F]Flumazenil PET binding with individual voxel-based morphometry data in 25 healthy control subjects: GABAA receptor binding potential was found to correlate positively with grey matter density. Findings are of relevance when considering GABAA receptor binding as a neuronal marker and measure of neuronal integrity.

    Article  PubMed  CAS  Google Scholar 

  12. Whiting PJ. The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel. 2003;6:648–57.

    PubMed  CAS  Google Scholar 

  13. McKernan RM, Whiting PJ. Which GABA(A)-receptor subtypes really occur in the brain? Trends Neurosci. 1996;19:139–43. doi:10.1016/S0166-2236(96)80023-3.

    Article  PubMed  CAS  Google Scholar 

  14. Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G. GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience. 2000;101:815–50.

    Article  PubMed  CAS  Google Scholar 

  15. Whiting PJ, McKernan RM, Wafford KA. Structure and pharmacology of vertebrate GABAA receptor subtypes. Int Rev Neurobiol. 1995;38:95–138.

    Article  PubMed  CAS  Google Scholar 

  16. Lambert JJ, Belelli D, Hill-Venning C, Peters JA. Neurosteroids and GABAA receptor function. Trends Pharmacol Sci. 1995;16:295–303.

    Article  PubMed  CAS  Google Scholar 

  17. Sieghart W. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev. 1995;47:181–234.

    PubMed  CAS  Google Scholar 

  18. Olsen RW, Sapp DM, Bureau MH, Turner DM, Kokka N. Allosteric actions of central nervous system depressants including anesthetics on subtypes of the inhibitory gamma-aminobutyric acidA receptor-chloride channel complex. Ann N Y Acad Sci. 1991;625:145–54.

    Article  PubMed  CAS  Google Scholar 

  19. Olsen RW, Sapp DW. Neuroactive steroid modulation of GABAA receptors. Adv Biochem Psychopharmacol. 1995;48:57–74.

    PubMed  CAS  Google Scholar 

  20. Harrison NL, Kugler JL, Jones MV, Greenblatt EP, Pritchett DB. Positive modulation of human gamma-aminobutyric acid type A and glycine receptors by the inhalation anesthetic isoflurane. Mol Pharmacol. 1993;44:628–32.

    PubMed  CAS  Google Scholar 

  21. Mahmoudi M, Kang MH, Tillakaratne N, Tobin AJ, Olsen RW. Chronic intermittent ethanol treatment in rats increases GABA(A) receptor alpha4-subunit expression: possible relevance to alcohol dependence. J Neurochemistry. 1997;68:2485–92.

    Article  CAS  Google Scholar 

  22. Hunkeler W, Mohler H, Pieri L, Polc P, Bonetti EP, Cumin R, et al. Selective antagonists of benzodiazepines. Nature. 1981;290:514–6.

    Article  PubMed  CAS  Google Scholar 

  23. Haefely W, Hunkeler W. The story of flumazenil. Eur J Anaesthesiol Suppl. 1988;2:3–13.

    PubMed  CAS  Google Scholar 

  24. Heiss WD, Herholz K. Brain receptor imaging. J Nucl Med. 2006;47:302–12.

    PubMed  CAS  Google Scholar 

  25. Hammers A. Flumazenil positron emission tomography and other ligands for functional imaging. Neuroimaging Clin N Am. 2004;14:537–51. doi:10.1016/j.nic.2004.04.012.

    Article  PubMed  Google Scholar 

  26. Mitterhauser M, Wadsak W, Wabnegger L, Mien LK, Togel S, Langer O, et al. Biological evaluation of 2'-[18F]fluoroflumazenil ([18F]FFMZ), a potential GABA receptor ligand for PET. Nucl Med Biol. 2004;31:291–5. doi:10.1016/j.nucmedbio.2003.09.003.

    Article  PubMed  CAS  Google Scholar 

  27. Chang YS, Jeong JM, Yoon YH, Kang WJ, Lee SJ, Lee DS, et al. Biological properties of 2'-[18F]fluoroflumazenil for central benzodiazepine receptor imaging. Nucl Med Biol. 2005;32:263–8. doi:10.1016/j.nucmedbio.2004.12.004.

    Article  PubMed  CAS  Google Scholar 

  28. Grunder G, Siessmeier T, Lange-Asschenfeldt C, Vernaleken I, Buchholz HG, Stoeter P, et al. [18F]Fluoroethylflumazenil: a novel tracer for PET imaging of human benzodiazepine receptors. Eur J Nucl Med. 2001;28:1463–70. doi:10.1007/s002590100594.

    Article  PubMed  CAS  Google Scholar 

  29. Leveque P, Sanabria-Bohorquez S, Bol A, De Volder A, Labar D, Van Rijckevorsel K, et al. Quantification of human brain benzodiazepine receptors using [18F]fluoroethylflumazenil: a first report in volunteers and epileptic patients. Eur J Nucl Med Mol Imaging. 2003;30:1630–6. doi:10.1007/s00259-003-1304-0.

    Article  PubMed  CAS  Google Scholar 

  30. Johnson EW, Woods SW, Zoghbi S, McBride BJ, Baldwin RM, Innis RB. Receptor binding characterization of the benzodiazepine radioligand 125I-Ro16-0154: potential probe for SPECT brain imaging. Life sciences. 1990;47:1535–46.

    Article  PubMed  CAS  Google Scholar 

  31. Beer HF, Blauenstein PA, Hasler PH, Delaloye B, Riccabona G, Bangerl I, et al. In vitro and in vivo evaluation of iodine-123-Ro 16-0154: a new imaging agent for SPECT investigations of benzodiazepine receptors. J Nucl Med. 1990;31:1007–14.

    PubMed  CAS  Google Scholar 

  32. Innis R, Zoghbi S, Johnson E, Woods S, Altikriti M, Baldwin R, et al. Spect imaging of the benzodiazepine receptor in nonhuman primate brain with [I-123] Ro 16-0154. Eur J Pharmacol. 1991;193:249–52. doi:10.1016/0014-2999(91)90043-P.

    Article  PubMed  CAS  Google Scholar 

  33. Dey HM, Seibyl JP, Stubbs JB, Zoghbi SS, Baldwin RM, Smith EO, et al. Human biodistribution and dosimetry of the SPECT benzodiazepine receptor radioligand iodine-123-iomazenil. J Nucl Med. 1994;35:399–404.

    PubMed  CAS  Google Scholar 

  34. Millet P, Graf C, Buck A, Walder B, Westera G, Broggini C, et al. Similarity and robustness of PET and SPECT binding parameters for benzodiazepine receptors. J Cereb Blood Flow Metab. 2000;20:1587–603. doi:10.1097/00004647-200011000-00009.

    Article  PubMed  CAS  Google Scholar 

  35. Westera G, Buck A, Burger C, Leenders KL, von Schulthess GK, Schubiger AP. Carbon-11 and iodine-123 labelled iomazenil: a direct PET-SPET compari son. Eur J Nucl Med. 1996;23:5–12.

    Article  PubMed  CAS  Google Scholar 

  36. Baldwin RM, Horti AG, Bremner JD, Stratton MD, Dannals RF, Ravert HT, et al. Synthesis and PET imaging of the benzodiazepine receptor tracer [N-methyl-11C]iomazenil. Nucl Med Biol. 1995;22:659–65.

    Article  PubMed  CAS  Google Scholar 

  37. Lingford-Hughes A, Hume SP, Feeney A, Hirani E, Osman S, Cunningham VJ, et al. Imaging the GABA-benzodiazepine receptor subtype containing the alpha5-subunit in vivo with [11C]Ro15 4513 positron emission tomography. J Cereb Blood Flow Metab. 2002;22:878–89. doi:10.1097/00004647-200207000-00013.

    Article  PubMed  CAS  Google Scholar 

  38. Van Laere K, Bormans G, Sanabria-Bohorquez SM, de Groot T, Dupont P, De Lepeleire I, et al. In vivo characterization and dynamic receptor occupancy imaging of TPA023B, an alpha 2/alpha 3/alpha 5 subtype selective gamma-aminobutyric acid-a partial agonist. Biol Psychiatry. 2008;64:153–61. doi:10.1016/j.biopsych.2008.01.021.

    Article  PubMed  Google Scholar 

  39. de Vries EF, Dierckx RA, Klein HC. Nuclear imaging of inflammation in neurologic and psychiatric disorders. Curr Clin Pharmacol. 2006;1:229–42.

    Article  PubMed  Google Scholar 

  40. Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE, et al. Microglia, amyloid, and cognition in Alzheimer's disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis. 2008;32:412–9. doi:10.1016/j.nbd.2008.08.001.

    Article  PubMed  CAS  Google Scholar 

  41. Gerhard A, Banati RB, Goerres GB, Cagnin A, Myers R, Gunn RN, et al. [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology. 2003;61:686–9.

    Article  PubMed  CAS  Google Scholar 

  42. Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab. 1991;11:735–44. doi:10.1038/jcbfm.1991.130.

    Article  PubMed  CAS  Google Scholar 

  43. Holthoff VA, Koeppe RA, Frey KA, Paradise AH, Kuhl DE. Differentiation of radioligand delivery and binding in the brain: validation of a 2-compartment model for [11C]flumazenil. J Cereb Blood Flow Metab. 1991;11:745–52. doi:10.1038/jcbfm.1991.131.

    Article  PubMed  CAS  Google Scholar 

  44. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10:740–7. doi:10.1038/jcbfm.1990.127.

    Article  PubMed  CAS  Google Scholar 

  45. Cunningham VJ, Jones T. Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab. 1993;13:15–23. doi:10.1038/jcbfm.1993.5.

    Article  PubMed  CAS  Google Scholar 

  46. Miederer I, Ziegler SI, Liedtke C, Spilker ME, Miederer M, Sprenger T, et al. Kinetic modelling of [11C]flumazenil using data-driven methods. Eur J Nucl Med Mol Imaging. 2009;36:659–70. doi:10.1007/s00259-008-0990-z.

    Article  PubMed  Google Scholar 

  47. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4(3 Pt 1):153–8. doi:10.1006/nimg.1996.0066.

    Article  PubMed  CAS  Google Scholar 

  48. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16:834–40. doi:10.1097/00004647-199609000-00008.

    Article  PubMed  CAS  Google Scholar 

  49. Millet P, Graf C, Buck A, Walder B, Ibanez V. Evaluation of the reference tissue models for PET and SPECT benzodiazepine binding parameters. Neuroimage. 2002;17:928–42.

    Article  PubMed  Google Scholar 

  50. Findley LJ. Epidemiology and genetics of essential tremor. Neurology. 2000;54(11 Suppl 4):S8–13.

    PubMed  CAS  Google Scholar 

  51. Findley LJ, Koller WC. Essential tremor: a review. Neurology. 1987;37:1194–7.

    Article  PubMed  CAS  Google Scholar 

  52. Britton TC. Essential tremor and its variants. Curr Op Neurol. 1995;8:314–9.

    Article  CAS  Google Scholar 

  53. Louis ED, Faust PL, Vonsattel JP, Honig LS, Rajput A, Robinson CA, et al. Neuropathological changes in essential tremor: 33 cases compared with 21 controls. Brain. 2007;130(Pt 12):3297–307. doi:10.1093/brain/awm266.

    Article  PubMed  Google Scholar 

  54. Shill HA, Adler CH, Sabbagh MN, Connor DJ, Caviness JN, Hentz JG, et al. Pathologic findings in prospectively ascertained essential tremor subjects. Neurology. 2008;70(16 Pt 2):1452–5. doi:10.1212/01.wnl.0000310425.76205.02.

    Article  PubMed  CAS  Google Scholar 

  55. Colebatch JG, Findley LJ, Frackowiak RS, Marsden CD, Brooks DJ. Preliminary report: activation of the cerebellum in essential tremor. Lancet. 1990;336:1028–30.

    Article  PubMed  CAS  Google Scholar 

  56. Wills AJ, Jenkins IH, Thompson PD, Findley LJ, Brooks DJ. Red nuclear and cerebellar but no olivary activation associated with essential tremor: a positron emission tomographic study. Ann Neurol. 1994;36:636–42. doi:10.1002/ana.410360413.

    Article  PubMed  CAS  Google Scholar 

  57. Wills AJ, Jenkins IH, Thompson PD, Findley LJ, Brooks DJ. A positron emission tomography study of cerebral activation associated with essential and writing tremor. Arch Neurol. 1995;52:299–305.

    Article  PubMed  CAS  Google Scholar 

  58. Boecker H, Wills AJ, Ceballos-Baumann A, Samuel M, Thompson PD, Findley LJ, et al. The effect of ethanol on alcohol-responsive essential tremor: a positron emission tomography study. Ann Neurol. 1996;39:650–8. doi:10.1002/ana.410390515.

    Article  PubMed  CAS  Google Scholar 

  59. Louis ED, Shungu DC, Mao X, Chan S, Jurewicz EC. Cerebellar metabolic symmetry in essential tremor studied with 1H magnetic resonance spectroscopic imaging: implications for disease pathology. Mov Disord. 2004;19:672–7. doi:10.1002/mds.20019.

    Article  PubMed  Google Scholar 

  60. Daniels C, Peller M, Wolff S, Alfke K, Witt K, Gaser C, et al. Voxel-based morphometry shows no decreases in cerebellar gray matter volume in essential tremor. Neurology. 2006;67:1452–6. doi:10.1212/01.wnl.0000240130.94408.99.

    Article  PubMed  CAS  Google Scholar 

  61. Benito-Leon J, Alvarez-Linera J, Hernandez-Tamames JA, Alonso-Navarro H, Jimenez-Jimenez FJ, Louis ED. Brain structural changes in essential tremor: voxel-based morphometry at 3-Tesla. J Neurol Sci. 2009;287:138–42. doi:10.1016/j.jns.2009.08.037.

    Article  PubMed  Google Scholar 

  62. Quattrone A, Cerasa A, Messina D, Nicoletti G, Hagberg GE, Lemieux L, et al. Essential head tremor is associated with cerebellar vermis atrophy: a volumetric and voxel-based morphometry MR imaging study. Am J Neuroradiol. 2008;29:1692–7. doi:10.3174/ajnr.A1190.

    Article  PubMed  CAS  Google Scholar 

  63. Contarino MF, Groot PF, van der Meer JN, Bour LJ, Speelman JD, Nederveen AJ, et al. Is there a role for combined EMG-fMRI in exploring the pathophysiology of essential tremor and improving functional neurosurgery? PLoS One. 2012;7:e46234. doi:10.1371/journal.pone.0046234.

    Article  PubMed  CAS  Google Scholar 

  64. Louis ED. A new twist for stopping the shakes? Revisiting GABAergic therapy for essential tremor. Arch Neurol. 1999;56:807–8.

    Article  PubMed  CAS  Google Scholar 

  65. Pahwa R, Lyons K, Hubble JP, Busenbark K, Rienerth JD, Pahwa A, et al. Double-blind controlled trial of gabapentin in essential tremor. Mov Disord. 1998;13:465–7. doi:10.1002/mds.870130315.

    Article  PubMed  CAS  Google Scholar 

  66. Koller WC, Rubino F, Gupta S. Pharmacologic probe with progabide of GABA mechanisms in essential tremor. Arch Neurol. 1987;44:905–6.

    Article  PubMed  CAS  Google Scholar 

  67. Mondrup K, Dupont E, Pedersen E. The effect of the GABA-agonist, progabide, on benign essential tremor. A controlled clinical trial. Acta Neurol Scand. 1983;68:248–52.

    Article  PubMed  CAS  Google Scholar 

  68. Mally J, Baranyi M, Vizi ES. Change in the concentrations of amino acids in CSF and serum of patients with essential tremor. J Neural Transm. 1996;103:555–60.

    Article  PubMed  CAS  Google Scholar 

  69. Kralic JE, Criswell HE, Osterman JL, O'Buckley TK, Wilkie ME, Matthews DB, et al. Genetic essential tremor in gamma-aminobutyric acidA receptor alpha1 subunit knockout mice. J Clin Invest. 2005;115:774–9. doi:10.1172/JCI23625.

    PubMed  CAS  Google Scholar 

  70. Zeuner KE, Molloy FM, Shoge RO, Goldstein SR, Wesley R, Hallett M. Effect of ethanol on the central oscillator in essential tremor. Mov Disord. 2003;18:1280–5. doi:10.1002/mds.10553.

    Article  PubMed  Google Scholar 

  71. de Haas SL, Zoethout RW, Van Dyck K, De Smet M, Rosen LB, Murphy MG, et al. The effects of TPA023, a GABAAalpha2,3 subtype-selective partial agonist, on essential tremor in comparison to alcohol. J Psychopharmacol. 2012;26:282–91. doi:10.1177/0269881111415731.

    Article  PubMed  Google Scholar 

  72. Findley LJKW. Definitions and behavioural classifications. In: Findley LJKW, editor. Handbook of Tremor Disorders. New York: Marcel Dekker; 1994. p. 2–4.

    Google Scholar 

  73. Meyer JH, Gunn RN, Myers R, Grasby PM. Assessment of spatial normalization of PET ligand images using ligand-specific templates. Neuroimage. 1999;9:545–53. doi:10.1006/nimg.1999.0431.

    Article  PubMed  CAS  Google Scholar 

  74. Hallett M, Dubinsky RM. Glucose metabolism in the brain of patients with essential tremor. J Neurol Sci. 1993;114:45–8.

    Article  PubMed  CAS  Google Scholar 

  75. •• Boecker H, Weindl A, Brooks DJ, Ceballos-Baumann AO, Liedtke C, Miederer M, et al. GABAergic dysfunction in essential tremor: an 11C-flumazenil PET study. J Nucl Med. 2010;51:1030–5. doi:10.2967/jnumed.109.074120. This paper describes significant alterations of GABAA receptor binding in Essential Tremor patients, supporting previous preliminary data by the same authors from an independent patient sample (Boecker H, Brooks DJ. Functional imaging of tremor. Mov Disord. 1998;13 Suppl 3:64–72.). Findings from this in vivo study using [11C]Flumazenil PET lend support to the “GABA hypothesis” of Essential Tremor, as suggested by animal and human work summarized in this review.

    Article  PubMed  Google Scholar 

  76. • Gironell A, Figueiras FP, Pagonabarraga J, Herance JR, Pascual-Sedano B, Trampal C, et al. Gaba and serotonin molecular neuroimaging in essential tremor: a clinical correlation study. Parkinsonism Relat Disord. 2012;18:876–80. doi:10.1016/j.parkreldis.2012.04.024. This paper is an extension of the findings by Boecker et al on alterations of GABAA receptor binding in essential tremor patients. By reporting a significant association of cerebellar [11C]Flumazenil uptake and tremor clinical rating scale scores, findings suggest a direct link between GABAA receptor binding status and clinical manifestations of essential tremor.

    Article  PubMed  CAS  Google Scholar 

  77. • Paris-Robidas S, Brochu E, Sintes M, Emond V, Bousquet M, Vandal M, et al. Defective dentate nucleus GABA receptors in essential tremor. Brain. 2012;135(Pt 1):105–16. doi:10.1093/brain/awr301. This post-mortem receptor-binding autoradiography study reports significant decreases of GABAA (35% reduction) and GABAB (22%–31% reduction) receptors in the cerebellar dentate nucleus from individuals with essential tremor, compared with controls or individuals with Parkinson’s disease.

    Article  PubMed  Google Scholar 

  78. Luo C, Rajput AH, Robinson CA, Rajput A. Gamma-aminobutyric acid (GABA)-B receptor 1 in cerebellar cortex of essential tremor. J Clin Neurosci. 2012;19:920–1. doi:10.1016/j.jocn.2011.11.001.

    Article  PubMed  CAS  Google Scholar 

  79. Thier S, Kuhlenbaumer G, Lorenz D, Nothnagel M, Nebel A, Christensen K, et al. GABA(A) receptor- and GABA transporter polymorphisms and risk for essential tremor. Eur J Neurol. 2011;18:1098–100. doi:10.1111/j.1468-1331.2010.03308.x.

    Article  PubMed  CAS  Google Scholar 

  80. Garcia-Martin E, Martinez C, Alonso-Navarro H, Benito-Leon J, Lorenzo-Betancor O, Pastor P, et al. Gamma-aminobutyric acid GABRA4, GABRE, and GABRQ receptor polymorphisms and risk for essential tremor. Pharmacogenet Genomics. 2011;21:436–9. doi:10.1097/FPC.0b013e328345bec0.

    Article  PubMed  CAS  Google Scholar 

  81. Filion M, Tremblay L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res. 1991;547:142–51.

    PubMed  CAS  Google Scholar 

  82. Vila M, Levy R, Herrero MT, Ruberg M, Faucheux B, Obeso JA, et al. Consequences of nigrostriatal denervation on the functioning of the basal ganglia in human and nonhuman primates: an in situ hybridization study of cytochrome oxidase subunit I mRNA. J Neurosci. 1997;17:765–73.

    PubMed  CAS  Google Scholar 

  83. Ihara M, Tomimoto H, Ishizu K, Yoshida H, Sawamoto N, Hashikawa K, et al. Association of vascular parkinsonism with impaired neuronal integrity in the striatum. J Neural Transm. 2007;114:577–84. doi:10.1007/s00702-006-0610-7.

    Article  PubMed  CAS  Google Scholar 

  84. Pradat PF, Dupel-Pottier C, Lacomblez L, Salachas F, Meininger V, Spelle L, et al. Case report of pallido-pyramidal disease with supplementary motor area involvement. Mov Disord. 2001;16:762–4.

    Article  PubMed  CAS  Google Scholar 

  85. Foster NL, Minoshima S, Johanns J, Little R, Heumann ML, Kuhl DE, et al. PET measures of benzodiazepine receptors in progressive supranuclear palsy. Neurology. 2000;54:1768–73.

    Article  PubMed  CAS  Google Scholar 

  86. Kanazawa I, Kwak S, Sasaki H, Mizusawa H, Muramoto O, Yoshizawa K, et al. Studies on neurotransmitter markers and neuronal cell density in the cerebellar system in olivopontocerebellar atrophy and cortical cerebellar atrophy. J Neurol Sci. 1985;71:193–208.

    Article  PubMed  CAS  Google Scholar 

  87. Price RH, Albin RL, Sakurai SY, Polinsky RJ, Penney JB, Young AB. Cerebellar excitatory and inhibitory amino acid receptors in multiple system atrophy. Neurology. 1993;43:1323–8.

    Article  PubMed  CAS  Google Scholar 

  88. Garibotto V, Romito LM, Elia AE, Soliveri P, Panzacchi A, Carpinelli A, et al. In vivo evidence for GABA(A) receptor changes in the sensorimotor system in primary dystonia. Mov Disord. 2011;26:852–7. doi:10.1002/mds.23553.

    Article  PubMed  Google Scholar 

  89. Herath P, Gallea C, van der Veen JW, Horovitz SG, Hallett M. In vivo neurochemistry of primary focal hand dystonia: a magnetic resonance spectroscopic neurometabolite profiling study at 3T. Mov Disord. 2010;25:2800–8. doi:10.1002/mds.23306.

    Article  PubMed  Google Scholar 

  90. Levy LM, Hallett M. Impaired brain GABA in focal dystonia. Ann Neurol. 2002;51:93–101.

    Article  PubMed  CAS  Google Scholar 

  91. Martin JB, Gusella JF. Huntington's disease. Pathogenesis and management. N Engl J Med. 1986;315:1267–76. doi:10.1056/NEJM198611133152006.

    Article  PubMed  CAS  Google Scholar 

  92. Group THsDCR, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 1993;72:971–83.

    Article  Google Scholar 

  93. Holthoff VA, Koeppe RA, Frey KA, Penney JB, Markel DS, Kuhl DE, et al. Positron emission tomography measures of benzodiazepine receptors in Huntington's disease. Ann Neurol. 1993;34:76–81. doi:10.1002/ana.410340114.

    Article  PubMed  CAS  Google Scholar 

  94. Pinborg LH, Videbaek C, Hasselbalch SG, Sorensen SA, Wagner A, Paulson OB, et al. Benzodiazepine receptor quantification in Huntington's disease with [(123)I]omazenil and SPECT. J Neurol Neurosurg Psychiatry. 2001;70:657–61.

    Article  PubMed  CAS  Google Scholar 

  95. Boecker H, Kuwert T, Langen KJ, Lange HW, Czech N, Ziemons K, et al. SPECT with HMPAO compared with PET with FDG in Huntington disease. J Comput Assist Tomogr. 1994;18:542–8.

    Article  PubMed  CAS  Google Scholar 

  96. Kuwert T, Lange HW, Langen KJ, Herzog H, Aulich A, Feinendegen LE. Cortical and subcortical glucose consumption measured by PET in patients with Huntington's disease. Brain. 1990;113(Pt 5):1405–23.

    Article  PubMed  Google Scholar 

  97. Ciarmiello A, Cannella M, Lastoria S, Simonelli M, Frati L, Rubinsztein DC, et al. Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington's disease. J Nucl Med. 2006;47:215–22.

    PubMed  CAS  Google Scholar 

  98. Feigin A, Leenders KL, Moeller JR, Missimer J, Kuenig G, Spetsieris P, et al. Metabolic network abnormalities in early Huntington's disease: an [(18)F]FDG PET study. J Nucl Med. 2001;42:1591–5.

    PubMed  CAS  Google Scholar 

  99. Ciarmiello A, Giovacchini G, Orobello S, Bruselli L, Elifani F, Squitieri F. 18F-FDG PET uptake in the pre-Huntington disease caudate affects the time-to-onset independently of CAG expansion size. Eur J Nucl Med Mol Imaging. 2012;39:1030–6. doi:10.1007/s00259-012-2114-z.

    Article  PubMed  CAS  Google Scholar 

  100. Kunig G, Leenders KL, Sanchez-Pernaute R, Antonini A, Vontobel P, Verhagen A, et al. Benzodiazepine receptor binding in Huntington's disease: [11C]flumazenil uptake measured using positron emission tomography. Ann Neurol. 2000;47:644–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with ethics Guidelines

Conflict of Interest

Henning Boecker declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Boecker.

Additional information

This article is part of the Topical Collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boecker, H. Imaging the Role of GABA in Movement Disorders. Curr Neurol Neurosci Rep 13, 385 (2013). https://doi.org/10.1007/s11910-013-0385-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0385-9

Keywords

Navigation