Skip to main content

In Vivo Positron Emission Tomography of Extrastriatal Non-Dopaminergic Pathology in Parkinson Disease

  • Chapter
  • First Online:
The Neuroimaging of Brain Diseases

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Parkinson disease (PD) is a progressive neurodegenerative disorder characterized by the presence of both motor and non-motor symptoms. The hallmark neuropathology of PD is nigrostriatal dopaminergic denervation. Neuropathological studies, however, have also shown the involvement of extrastriatal non-dopaminergic neurotransmitter systems and Alzheimer disease (AD)-type pathology in the etiology of PD symptoms. With the advancement of new positron emission tomography (PET) radiotracers, both dopaminergic and non-dopaminergic neurotransmission systems as well as comorbid presence of AD-type proteinopathies can now be more readily assessed in vivo. We will review in vivo PET studies reporting on extrastriatal non-dopaminergic pathology in PD. We conclude that extrastriatal non-dopaminergic pathology, at least in part, may explain the heterogeneity of motor and non-motor disease manifestations in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alves G, Forsaa EB, Pedersen KF, Dreetz Gjerstad M, Larsen JP (2008) Epidemiology of Parkinson’s disease. J Neurol 255 Suppl 5(5):18–32

    PubMed  Google Scholar 

  2. Titova N, Qamar MA, Chaudhuri KR (2017) Chapter 3 – The nonmotor features of Parkinson’s disease. In: Bhatia KP, Chaudhuri KR, Stamelou M (eds) International review of neurobiology, vol 132. Academic Press, pp 33–54

    Google Scholar 

  3. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Paulus W, Jellinger K (1991) The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol 50(6):743–755

    CAS  PubMed  Google Scholar 

  5. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Google Scholar 

  6. Hughes AJ, Daniel SE, Blankson S, Lees AJ (1993) A clinicopathologic study of 100 cases of Parkinson’s disease. Arch Neurol 50(2):140–148

    CAS  PubMed  Google Scholar 

  7. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ (1992) What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. Neurology 42(6):1142–1146

    CAS  PubMed  Google Scholar 

  8. Langston JW (2006) The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol 59(4):591–596

    PubMed  Google Scholar 

  9. Holdorff B (2006) Fritz Heinrich Lewy (1885-1950). J Neurol 253(5):677–678

    PubMed  Google Scholar 

  10. Hely MA, Morris JG, Reid WG, Trafficante R (2005) Sydney multicenter study of Parkinson’s disease: non-L-dopa-responsive problems dominate at 15 years. Mov Disord 20(2):190–199

    PubMed  Google Scholar 

  11. Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG (2008) The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord 23(6):837–844

    PubMed  Google Scholar 

  12. Garnett ES, Firnau G, Chan PK, Sood S, Belbeck LW (1978) [18F]fluoro-dopa, an analogue of dopa, and its use in direct external measurements of storage, degradation, and turnover of intracerebral dopamine. Proc Natl Acad Sci U S A 75(1):464–467

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Koeppe RA, Frey KA, Vander Borght TM, Karlamangla A, Jewett DM, Lee LC et al (1996) Kinetic evaluation of [11C]dihydrotetrabenazine by dynamic PET: measurement of vesicular monoamine transporter. J Cereb Blood Flow Metab 16(6):1288–1299

    CAS  PubMed  Google Scholar 

  14. Lin SC, Lin KJ, Hsiao IT, Hsieh CJ, Lin WY, Lu CS et al (2014) In vivo detection of monoaminergic degeneration in early Parkinson disease by (18)F-9-fluoropropyl-(+)-dihydrotetrabenzazine PET. J Nucl Med 55(1):73–79

    CAS  PubMed  Google Scholar 

  15. Vander Borght TM, Sima AA, Kilbourn MR, Desmond TJ, Kuhl DE, Frey KA (1995) [3H]methoxytetrabenazine: a high specific activity ligand for estimating monoaminergic neuronal integrity. Neuroscience 68(3):955–962

    CAS  PubMed  Google Scholar 

  16. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318(14):876–880

    CAS  PubMed  Google Scholar 

  17. Frey KA, Koeppe RA, Kilbourn MR, Vander Borght TM, Albin RL, Gilman S et al (1996) Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 40(6):873–884

    CAS  PubMed  Google Scholar 

  18. Rakshi JS, Uema T, Ito K, Bailey DL, Morrish PK, Ashburner J et al (1999) Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson’s disease A 3D [(18)F]dopa-PET study. Brain 122(Pt 9):1637–1650

    PubMed  Google Scholar 

  19. Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE et al (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47(4):493–503

    CAS  PubMed  Google Scholar 

  20. Bohnen NI, Frey KA (2003) The role of positron emission tomography imaging in movement disorders. Neuroimaging Clin N Am 13(4):791–803

    PubMed  Google Scholar 

  21. Bohnen NI, Albin RL, Koeppe RA, Wernette KA, Kilbourn MR, Minoshima S et al (2006) Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab 26(9):1198–1212

    CAS  PubMed  Google Scholar 

  22. Morrish PK, Sawle GV, Brooks DJ (1996) An [18F]dopa-PET and clinical study of the rate of progression in Parkinson’s disease. Brain 119(Pt 2):585–591

    PubMed  Google Scholar 

  23. Nurmi E, Ruottinen HM, Kaasinen V, Bergman J, Haaparanta M, Solin O et al (2000) Progression in Parkinson’s disease: a positron emission tomography study with a dopamine transporter ligand [18F]CFT. Ann Neurol 47(6):804–808

    CAS  PubMed  Google Scholar 

  24. Antonini A, Vontobel P, Psylla M, Gunther I, Maguire PR, Missimer J et al (1995) Complementary positron emission tomographic studies of the striatal dopaminergic system in Parkinson’s disease. Arch Neurol 52(12):1183–1190

    CAS  PubMed  Google Scholar 

  25. Burn DJ, Mark MH, Playford ED, Maraganore DM, Zimmerman TR Jr, Duvoisin RC et al (1992) Parkinson’s disease in twins studied with 18F-dopa and positron emission tomography. Neurology 42(10):1894–1900

    CAS  PubMed  Google Scholar 

  26. Holthoff VA, Vieregge P, Kessler J, Pietrzyk U, Herholz K, Bonner J et al (1994) Discordant twins with Parkinson’s disease: positron emission tomography and early signs of impaired cognitive circuits. Ann Neurol 36(2):176–182

    CAS  PubMed  Google Scholar 

  27. Sawle GV, Wroe SJ, Lees AJ, Brooks DJ, Frackowiak RS (1992) The identification of presymptomatic parkinsonism: clinical and [18F]dopa positron emission tomography studies in an Irish kindred. Ann Neurol 32(5):609–617

    CAS  PubMed  Google Scholar 

  28. Piccini P, Morrish PK, Turjanski N, Sawle GV, Burn DJ, Weeks RA et al (1997) Dopaminergic function in familial Parkinson’s disease: a clinical and 18F-dopa positron emission tomography study. Ann Neurol 41(2):222–229

    CAS  PubMed  Google Scholar 

  29. Morrish PK, Rakshi JS, Bailey DL, Sawle GV, Brooks DJ (1998) Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 64(3):314–319

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaasinen V, Vahlberg T (2017) Striatal dopamine in Parkinson disease: A meta-analysis of imaging studies. Ann Neurol 82(6):873–882

    CAS  PubMed  Google Scholar 

  31. Haugen J, Muller ML, Kotagal V, Albin RL, Koeppe RA, Scott PJ et al (2016) Prevalence of impaired odor identification in Parkinson disease with imaging evidence of nigrostriatal denervation. J Neural Transm (Vienna) 123(4):421–424

    CAS  Google Scholar 

  32. Haehner A, Boesveldt S, Berendse HW, Mackay-Sim A, Fleischmann J, Silburn PA et al (2009) Prevalence of smell loss in Parkinson’s disease--a multicenter study. Parkinsonism Relat Disord 15(7):490–494

    CAS  PubMed  Google Scholar 

  33. Ross GW, Petrovitch H, Abbott RD, Tanner CM, Popper J, Masaki K et al (2008) Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann Neurol 63(2):167–173

    PubMed  Google Scholar 

  34. Haehner A, Hummel T, Hummel C, Sommer U, Junghanns S, Reichmann H (2007) Olfactory loss may be a first sign of idiopathic Parkinson’s disease. Mov Disord 22(6):839–842

    PubMed  Google Scholar 

  35. Berendse HW, Ponsen MM (2009) Diagnosing premotor Parkinson’s disease using a two-step approach combining olfactory testing and DAT SPECT imaging. Parkinsonism Relat Disord 15(Suppl 3):S26–S30

    PubMed  Google Scholar 

  36. Ponsen MM, Stoffers D, Booij J, van Eck-Smit BL, Wolters E, Berendse HW (2004) Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol 56(2):173–181

    PubMed  Google Scholar 

  37. Ponsen MM, Stoffers D, Wolters E, Booij J, Berendse HW (2010) Olfactory testing combined with dopamine transporter imaging as a method to detect prodromal Parkinson’s disease. J Neurol Neurosurg Psychiatry 81(4):396–399

    PubMed  Google Scholar 

  38. Jennings D, Siderowf A, Stern M, Seibyl J, Eberly S, Oakes D et al (2014) Imaging prodromal Parkinson disease: the Parkinson Associated Risk Syndrome Study. Neurology 83(19):1739–1746

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jennings D, Siderowf A, Stern M, Seibyl J, Eberly S, Oakes D et al (2017) Conversion to Parkinson disease in the PARS hyposmic and dopamine transporter-deficit prodromal cohort. JAMA Neurol 74(8):933–940

    PubMed  PubMed Central  Google Scholar 

  40. Mesulam MM, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 275(2):216–240

    CAS  PubMed  Google Scholar 

  41. Liu AK, Chang RC, Pearce RK, Gentleman SM (2015) Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol 129(4):527–540

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Heckers S, Geula C, Mesulam MM (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325(1):68–82

    CAS  PubMed  Google Scholar 

  43. de Lacalle S, Hersh LB, Saper CB (1993) Cholinergic innervation of the human cerebellum. J Comp Neurol 328(3):364–376

    PubMed  Google Scholar 

  44. Fibiger HC (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res 257(3):327–388

    CAS  PubMed  Google Scholar 

  45. Lecourtier L, Kelly PH (2007) A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci Biobehav Rev 31(5):658–672

    CAS  PubMed  Google Scholar 

  46. Mesulam MM, Mash D, Hersh L, Bothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol 323(2):252–268

    CAS  PubMed  Google Scholar 

  47. Candy JM, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF et al (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 59(2):277–289

    CAS  PubMed  Google Scholar 

  48. Nakano I, Hirano A (1984) Parkinson’s disease: neuron loss in the nucleus basalis without concomitant Alzheimer’s disease. Ann Neurol 15(5):415–418

    CAS  PubMed  Google Scholar 

  49. Rogers JD, Brogan D, Mirra SS (1985) The nucleus basalis of Meynert in neurological disease: a quantitative morphological study. Ann Neurol 17(2):163–170

    CAS  PubMed  Google Scholar 

  50. Tagliavini F, Pilleri G, Bouras C, Constantinidis J (1984) The basal nucleus of Meynert in idiopathic Parkinson’s disease. Acta Neurol Scand 70(1):20–28

    CAS  PubMed  Google Scholar 

  51. Whitehouse PJ, Hedreen JC, White CL 3rd, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 13(3):243–248

    CAS  PubMed  Google Scholar 

  52. Mesulam MM, Geula C (1992) Overlap between acetylcholinesterase-rich and choline acetyltransferase-positive (cholinergic) axons in human cerebral cortex. Brain Res 577(1):112–120

    CAS  PubMed  Google Scholar 

  53. Koeppe RA, Frey KA, Snyder SE, Meyer P, Kilbourn MR, Kuhl DE (1999) Kinetic modeling of N-[11C]methylpiperidin-4-yl propionate: alternatives for analysis of an irreversible positron emission tomography trace for measurement of acetylcholinesterase activity in human brain. J Cereb Blood Flow Metab 19(10):1150–1163

    CAS  PubMed  Google Scholar 

  54. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL et al (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52(4):691–699

    CAS  PubMed  Google Scholar 

  55. Atack JR, Perry EK, Bonham JR, Candy JM, Perry RH (1986) Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. J Neurochem 47(1):263–277

    CAS  PubMed  Google Scholar 

  56. Petrou M, Frey KA, Kilbourn MR, Scott PJ, Raffel DM, Bohnen NI et al (2014) In vivo imaging of human cholinergic nerve terminals with (−)-5-(18)F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J Nucl Med 55(3):396–404

    CAS  PubMed  Google Scholar 

  57. Kuhl DE, Koeppe RA, Fessler JA, Minoshima S, Ackermann RJ, Carey JE et al (1994) In vivo mapping of cholinergic neurons in the human brain using SPECT and IBVM. J Nucl Med 35(3):405–410

    CAS  PubMed  Google Scholar 

  58. Hillmer AT, Esterlis I, Gallezot JD, Bois F, Zheng MQ, Nabulsi N et al (2016) Imaging of cerebral alpha4beta2* nicotinic acetylcholine receptors with (−)-[(18)F]Flubatine PET: Implementation of bolus plus constant infusion and sensitivity to acetylcholine in human brain. NeuroImage 141:71–80

    CAS  PubMed  Google Scholar 

  59. Gao Y, Mease RC, Olson TT, Kellar KJ, Dannals RF, Pomper MG et al (2015) [(125)I]Iodo-ASEM, a specific in vivo radioligand for alpha7-nAChR. Nucl Med Biol 42(5):488–493

    CAS  PubMed  Google Scholar 

  60. Shinotoh H, Namba H, Yamaguchi M, Fukushi K, Nagatsuka S, Iyo M et al (1999) Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson’s disease and progressive supranuclear palsy. Ann Neurol 46(1):62–69

    CAS  PubMed  Google Scholar 

  61. Hilker R, Thomas AV, Klein JC, Weisenbach S, Kalbe E, Burghaus L et al (2005) Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65(11):1716–1722

    CAS  PubMed  Google Scholar 

  62. Gilman S, Koeppe RA, Nan B, Wang CN, Wang X, Junck L et al (2010) Cerebral cortical and subcortical cholinergic deficits in parkinsonian syndromes. Neurology 74(18):1416–1423

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bohnen NI, Kaufer DI, Ivanco LS, Lopresti B, Koeppe RA, Davis JG et al (2003) Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 60(12):1745–1748

    PubMed  Google Scholar 

  64. Shinotoh H, Aotsuka A, Fukushi K, Nagatsuka S, Tanaka N, Ota T et al (2001) Effect of donepezil on brain acetylcholinesterase activity in patients with AD measured by PET. Neurology 56(3):408–410

    CAS  PubMed  Google Scholar 

  65. Shimada H, Hirano S, Shinotoh H, Aotsuka A, Sato K, Tanaka N et al (2009) Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 73(4):273–278

    CAS  PubMed  Google Scholar 

  66. Bohnen NI, Muller ML, Kotagal V, Koeppe RA, Kilbourn MR, Gilman S et al (2012) Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. J Cereb Blood Flow Metab 32(8):1609–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Meyer PM, Strecker K, Kendziorra K, Becker G, Hesse S, Woelpl D et al (2009) Reduced alpha4beta2*-nicotinic acetylcholine receptor binding and its relationship to mild cognitive and depressive symptoms in Parkinson disease. Arch Gen Psychiatry 66(8):866–877

    CAS  PubMed  Google Scholar 

  68. Kas A, Bottlaender M, Gallezot JD, Vidailhet M, Villafane G, Gregoire MC et al (2009) Decrease of nicotinic receptors in the nigrostriatal system in Parkinson’s disease. J Cereb Blood Flow Metab 29(9):1601–1608

    CAS  PubMed  Google Scholar 

  69. Asahina M, Suhara T, Shinotoh H, Inoue O, Suzuki K, Hattori T (1998) Brain muscarinic receptors in progressive supranuclear palsy and Parkinson’s disease: a positron emission tomographic study. J Neurol Neurosurg Psychiatry 65(2):155–163

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Muller ML, Bohnen NI (2013) Cholinergic dysfunction in Parkinson’s disease. Curr Neurol Neurosci Rep 13(9):377

    PubMed  PubMed Central  Google Scholar 

  71. Aarsland D, Kurz MW (2010) The epidemiology of dementia associated with Parkinson disease. J Neurol Sci 289(1–2):18–22

    PubMed  Google Scholar 

  72. Ruberg M, Rieger F, Villageois A, Bonnet AM, Agid Y (1986) Acetylcholinesterase and butyrylcholinesterase in frontal cortex and cerebrospinal fluid of demented and non-demented patients with Parkinson’s disease. Brain Res 362(1):83–91

    CAS  PubMed  Google Scholar 

  73. Mattila PM, Roytta M, Lonnberg P, Marjamaki P, Helenius H, Rinne JO (2001) Choline acetytransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment. Acta Neuropathol 102(2):160–166

    CAS  PubMed  Google Scholar 

  74. Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Constantine GM et al (2006) Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 253(2):242–247

    CAS  PubMed  Google Scholar 

  75. Bohnen NI, Albin RL, Muller ML, Petrou M, Kotagal V, Koeppe RA et al (2015) Frequency of cholinergic and caudate nucleus dopaminergic deficits across the predemented cognitive spectrum of Parkinson disease and evidence of interaction effects. JAMA Neurol 72(2):194–200

    PubMed  PubMed Central  Google Scholar 

  76. Sawamoto N, Piccini P, Hotton G, Pavese N, Thielemans K, Brooks DJ (2008) Cognitive deficits and striato-frontal dopamine release in Parkinson’s disease. Brain 131(Pt 5):1294–1302

    PubMed  Google Scholar 

  77. Aubert I, Araujo DM, Cecyre D, Robitaille Y, Gauthier S, Quirion R (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem 58(2):529–541

    CAS  PubMed  Google Scholar 

  78. Whitehouse PJ, Martino AM, Wagster MV, Price DL, Mayeux R, Atack JR et al (1988) Reductions in [3H]nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s disease: an autoradiographic study. Neurology 38(5):720–723

    CAS  PubMed  Google Scholar 

  79. Muslimovic D, Post B, Speelman JD, Schmand B, de Haan RJ, Group CS (2008) Determinants of disability and quality of life in mild to moderate Parkinson disease. Neurology 70(23):2241–2247

    CAS  PubMed  Google Scholar 

  80. Sethi K (2008) Levodopa unresponsive symptoms in Parkinson disease. Mov Disord 23(Suppl 3):S521–S533

    PubMed  Google Scholar 

  81. Bohnen NI, Muller ML, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA et al (2009) History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73(20):1670–1676

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Karachi C, Grabli D, Bernard FA, Tande D, Wattiez N, Belaid H et al (2010) Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest 120(8):2745–2754

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Muller ML, Albin RL, Kotagal V, Koeppe RA, Scott PJ, Frey KA et al (2013) Thalamic cholinergic innervation and postural sensory integration function in Parkinson’s disease. Brain 136(Pt 11):3282–3289

    PubMed  PubMed Central  Google Scholar 

  84. Bohnen NI, Frey KA, Studenski S, Kotagal V, Koeppe RA, Scott PJ et al (2013) Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology 81(18):1611–1616

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kulisevsky J, Pagonabarraga J, Pascual-Sedano B, Garcia-Sanchez C, Gironell A, Trapecio Group Study (2008) Prevalence and correlates of neuropsychiatric symptoms in Parkinson’s disease without dementia. Mov Disord 23(13):1889–1896

    Google Scholar 

  86. Bohnen NI, Kaufer DI, Hendrickson R, Constantine GM, Mathis CA, Moore RY (2007) Cortical cholinergic denervation is associated with depressive symptoms in Parkinson’s disease and parkinsonian dementia. J Neurol Neurosurg Psychiatry 78(6):641–643

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Remy P, Doder M, Lees A, Turjanski N, Brooks D (2005) Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128(Pt 6):1314–1322

    PubMed  Google Scholar 

  88. Doty RL (2012) Olfactory dysfunction in Parkinson disease. Nat Rev Neurol 8(6):329–339

    CAS  PubMed  Google Scholar 

  89. Bohnen NI, Muller ML (2013) In vivo neurochemical imaging of olfactory dysfunction in Parkinson’s disease. J Neural Transm (Vienna). 120(4):571–576

    PubMed  Google Scholar 

  90. Bohnen NI, Muller ML, Kotagal V, Koeppe RA, Kilbourn MA, Albin RL et al (2010) Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson’s disease. Brain 133(Pt 6):1747–1754

    PubMed  PubMed Central  Google Scholar 

  91. Bohnen NI, Gedela S, Kuwabara H, Constantine GM, Mathis CA, Studenski SA et al (2007) Selective hyposmia and nigrostriatal dopaminergic denervation in Parkinson’s disease. J Neurol 254(1):84–90

    CAS  PubMed  Google Scholar 

  92. Albin RL, Koeppe RA, Chervin RD, Consens FB, Wernette K, Frey KA et al (2000) Decreased striatal dopaminergic innervation in REM sleep behavior disorder. Neurology 55(9):1410–1412

    CAS  PubMed  Google Scholar 

  93. Postuma RB, Gagnon JF, Vendette M, Montplaisir JY (2009) Idiopathic REM sleep behavior disorder in the transition to degenerative disease. Mov Disord 24(15):2225–2232

    PubMed  Google Scholar 

  94. Jozwiak N, Postuma RB, Montplaisir J, Latreille V, Panisset M, Chouinard S et al (2017) REM sleep behavior disorder and cognitive impairment in Parkinson’s disease. Sleep 40(8)

    Google Scholar 

  95. Marion MH, Qurashi M, Marshall G, Foster O (2008) Is REM sleep behaviour disorder (RBD) a risk factor of dementia in idiopathic Parkinson’s disease? J Neurol 255(2):192–196

    PubMed  Google Scholar 

  96. Vendette M, Gagnon JF, Decary A, Massicotte-Marquez J, Postuma RB, Doyon J et al (2007) REM sleep behavior disorder predicts cognitive impairment in Parkinson disease without dementia. Neurology 69(19):1843–1849

    CAS  PubMed  Google Scholar 

  97. Chahine LM, Xie SX, Simuni T, Tran B, Postuma R, Amara A et al (2016) Longitudinal changes in cognition in early Parkinson’s disease patients with REM sleep behavior disorder. Parkinsonism Relat Disord 27:102–106

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kotagal V, Albin RL, Muller ML, Koeppe RA, Chervin RD, Frey KA et al (2012) Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease. Ann Neurol 71(4):560–568

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Boller F, Mizutani T, Roessmann U, Gambetti P (1980) Parkinson disease, dementia, and Alzheimer disease: clinicopathological correlations. Ann Neurol 7(4):329–335

    CAS  PubMed  Google Scholar 

  100. Hakim AM, Mathieson G (1979) Dementia in Parkinson disease: a neuropathologic study. Neurology 29(9 Pt 1):1209–1214

    CAS  PubMed  Google Scholar 

  101. Gaspar P, Gray F (1984) Dementia in idiopathic Parkinson’s disease. A neuropathological study of 32 cases. Acta Neuropathol 64(1):43–52

    CAS  PubMed  Google Scholar 

  102. Xuereb JH, Tomlinson BE, Irving D, Perry RH, Blessed G, Perry EK (1990) Cortical and subcortical pathology in Parkinson’s disease: relationship to parkinsonian dementia. Adv Neurol 53:35–40

    CAS  PubMed  Google Scholar 

  103. Brown DF, Dababo MA, Bigio EH, Risser RC, Eagan KP, Hladik CL et al (1998) Neuropathologic evidence that the Lewy body variant of Alzheimer disease represents coexistence of Alzheimer disease and idiopathic Parkinson disease. J Neuropathol Exp Neurol 57(1):39–46

    CAS  PubMed  Google Scholar 

  104. Chui HC, Mortimer JA, Slager U, Zarow C, Bondareff W, Webster DD (1986) Pathologic correlates of dementia in Parkinson’s disease. Arch Neurol 43(10):991–995

    CAS  PubMed  Google Scholar 

  105. Mattila PM, Roytta M, Torikka H, Dickson DW, Rinne JO (1998) Cortical Lewy bodies and Alzheimer-type changes in patients with Parkinson’s disease. Acta Neuropathol 95(6):576–582

    CAS  PubMed  Google Scholar 

  106. Hurtig HI, Trojanowski JQ, Galvin J, Ewbank D, Schmidt ML, Lee VM et al (2000) Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 54(10):1916–1921

    CAS  PubMed  Google Scholar 

  107. Apaydin H, Ahlskog JE, Parisi JE, Boeve BF, Dickson DW (2002) Parkinson disease neuropathology: later-developing dementia and loss of the levodopa response. Arch Neurol 59(1):102–112

    PubMed  Google Scholar 

  108. Mastaglia FL, Johnsen RD, Byrnes ML, Kakulas BA (2003) Prevalence of amyloid-beta deposition in the cerebral cortex in Parkinson’s disease. Mov Disord 18(1):81–86

    PubMed  Google Scholar 

  109. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12(2):207–216

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gomez MG, Langois CM et al (2012) Florbetapir PET analysis of amyloid-beta deposition in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: a cross-sectional study. Lancet Neurol 11(12):1057–1065

    CAS  PubMed  Google Scholar 

  111. Braak H, Braak E (1990) Cognitive impairment in Parkinson’s disease: amyloid plaques, neurofibrillary tangles, and neuropil threads in the cerebral cortex. J Neural Transm Park Dis Dement Sect 2(1):45–57

    CAS  PubMed  Google Scholar 

  112. Braak H, Rub U, Jansen Steur EN, Del Tredici K, de Vos RA (2005) Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology 64(8):1404–1410

    CAS  PubMed  Google Scholar 

  113. Horvath J, Herrmann FR, Burkhard PR, Bouras C, Kovari E (2013) Neuropathology of dementia in a large cohort of patients with Parkinson’s disease. Parkinsonism Relat Disord 19(10):864–868

    Google Scholar 

  114. Howlett DR, Whitfield D, Johnson M, Attems J, O’Brien JT, Aarsland D et al (2015) Regional multiple pathology scores are associated with cognitive decline in lewy body dementias. Brain Pathol 25(4):401–408

    CAS  PubMed  Google Scholar 

  115. Ruffmann C, Calboli FC, Bravi I, Gveric D, Curry LK, de Smith A et al (2016) Cortical Lewy bodies and Abeta burden are associated with prevalence and timing of dementia in Lewy body diseases. Neuropathol Appl Neurobiol 42(5):436–450

    CAS  PubMed  Google Scholar 

  116. Walker L, McAleese KE, Thomas AJ, Johnson M, Martin-Ruiz C, Parker C et al (2015) Neuropathologically mixed Alzheimer’s and Lewy body disease: burden of pathological protein aggregates differs between clinical phenotypes. Acta Neuropathol 129(5):729–748

    CAS  PubMed  Google Scholar 

  117. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55(3):306–319

    CAS  PubMed  Google Scholar 

  118. Mathis CA, Bacskai BJ, Kajdasz ST, McLellan ME, Frosch MP, Hyman BT et al (2002) A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg Med Chem Lett 12(3):295–298

    CAS  PubMed  Google Scholar 

  119. Wang Y, Klunk WE, Huang GF, Debnath ML, Holt DP, Mathis CA (2002) Synthesis and evaluation of 2-(3′-iodo-4′-aminophenyl)-6-hydroxybenzothiazole for in vivo quantitation of amyloid deposits in Alzheimer’s disease. J Mol Neurosci 19(1–2):11–16

    PubMed  Google Scholar 

  120. Lockhart A, Lamb JR, Osredkar T, Sue LI, Joyce JN, Ye L et al (2007) PIB is a non-specific imaging marker of amyloid-beta (Abeta) peptide-related cerebral amyloidosis. Brain 130(Pt 10):2607–2615

    CAS  PubMed  Google Scholar 

  121. Fodero-Tavoletti MT, Smith DP, McLean CA, Adlard PA, Barnham KJ, Foster LE et al (2007) In vitro characterization of Pittsburgh compound-B binding to Lewy bodies. J Neurosci 27(39):10365–10371

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ye L, Velasco A, Fraser G, Beach TG, Sue L, Osredkar T et al (2008) In vitro high affinity alpha-synuclein binding sites for the amyloid imaging agent PIB are not matched by binding to Lewy bodies in postmortem human brain. J Neurochem 105(4):1428–1437

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16(3):271–278. discussion 8-84

    CAS  PubMed  Google Scholar 

  124. Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G et al (2007) Imaging beta-amyloid burden in aging and dementia. Neurology 68(20):1718–1725

    CAS  PubMed  Google Scholar 

  125. Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, DeSanti S et al (2008) Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(12):2169–2181

    PubMed  PubMed Central  Google Scholar 

  126. Edison P, Rowe CC, Rinne JO, Ng S, Ahmed I, Kemppainen N et al (2008) Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J Neurol Neurosurg Psychiatry 79(12):1331–1338

    CAS  PubMed  Google Scholar 

  127. Gomperts SN, Rentz DM, Moran E, Becker JA, Locascio JJ, Klunk WE et al (2008) Imaging amyloid deposition in Lewy body diseases. Neurology 71(12):903–910

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Maetzler W, Liepelt I, Reimold M, Reischl G, Solbach C, Becker C et al (2009) Cortical PIB binding in Lewy body disease is associated with Alzheimer-like characteristics. Neurobiol Dis 34(1):107–112

    CAS  PubMed  Google Scholar 

  129. Maetzler W, Reimold M, Liepelt I, Solbach C, Leyhe T, Schweitzer K et al (2008) [11C]PIB binding in Parkinson’s disease dementia. NeuroImage 39(3):1027–1033

    PubMed  Google Scholar 

  130. Johansson A, Savitcheva I, Forsberg A, Engler H, Langstrom B, Nordberg A et al (2008) [(11)C]-PIB imaging in patients with Parkinson’s disease: preliminary results. Parkinsonism Relat Disord 14(4):345–347

    CAS  PubMed  Google Scholar 

  131. Burack MA, Hartlein J, Flores HP, Taylor-Reinwald L, Perlmutter JS, Cairns NJ (2010) In vivo amyloid imaging in autopsy-confirmed Parkinson disease with dementia. Neurology 74(1):77–84

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Gomperts SN, Locascio JJ, Marquie M, Santarlasci AL, Rentz DM, Maye J et al (2012) Brain amyloid and cognition in Lewy body diseases. Mov Disord 27(8):965–973

    PubMed  PubMed Central  Google Scholar 

  133. Gomperts SN, Locascio JJ, Rentz D, Santarlasci A, Marquie M, Johnson KA et al (2013) Amyloid is linked to cognitive decline in patients with Parkinson disease without dementia. Neurology 80(1):85–91

    PubMed  PubMed Central  Google Scholar 

  134. Jokinen P, Scheinin N, Aalto S, Nagren K, Savisto N, Parkkola R et al (2010) [(11)C]PIB-, [(18)F]FDG-PET and MRI imaging in patients with Parkinson’s disease with and without dementia. Parkinsonism Relat Disord 16(10):666–670

    PubMed  Google Scholar 

  135. Shimada H, Shinotoh H, Hirano S, Miyoshi M, Sato K, Tanaka N et al (2013) Beta-Amyloid in Lewy body disease is related to Alzheimer’s disease-like atrophy. Mov Disord 28(2):169–175

    CAS  PubMed  Google Scholar 

  136. Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G et al (2011) Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med 52(8):1210–1217

    PubMed  Google Scholar 

  137. Mashima K, Ito D, Kameyama M, Osada T, Tabuchi H, Nihei Y et al (2017) Extremely low prevalence of amyloid positron emission tomography positivity in Parkinson’s disease without dementia. Eur Neurol 77(5–6):231–237

    CAS  PubMed  Google Scholar 

  138. Petrou M, Bohnen NI, Muller ML, Koeppe RA, Albin RL, Frey KA (2012) Abeta-amyloid deposition in patients with Parkinson disease at risk for development of dementia. Neurology 79(11):1161–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Klein JC, Eggers C, Kalbe E, Weisenbach S, Hohmann C, Vollmar S et al (2010) Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 74(11):885–892

    CAS  PubMed  Google Scholar 

  140. Frey KA, Petrou M (2015) Imaging amyloidopathy in parkinson disease and parkinsonian dementia syndromes. Clin Transl Imaging 3(1):57–64

    PubMed  PubMed Central  Google Scholar 

  141. Petrou M, Dwamena BA, Foerster BR, MacEachern MP, Bohnen NI, Muller ML et al (2015) Amyloid deposition in Parkinson’s disease and cognitive impairment: a systematic review. Mov Disord 30(7):928–935

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Donaghy P, Thomas AJ, O’Brien JT (2015) Amyloid PET Imaging in Lewy body disorders. Am J Geriatr Psychiatry 23(1):23–37

    PubMed  Google Scholar 

  143. Gomperts SN, Marquie M, Locascio JJ, Bayer S, Johnson KA, Growdon JH (2016) PET radioligands reveal the basis of dementia in parkinson’s disease and dementia with lewy bodies. Neurodegener Dis 16(1–2):118–124

    CAS  PubMed  Google Scholar 

  144. Kalaitzakis ME, Graeber MB, Gentleman SM, Pearce RK (2008) Striatal beta-amyloid deposition in Parkinson disease with dementia. J Neuropathol Exp Neurol 67(2):155–161

    PubMed  Google Scholar 

  145. Kalaitzakis ME, Walls AJ, Pearce RK, Gentleman SM (2011) Striatal Abeta peptide deposition mirrors dementia and differentiates DLB and PDD from other parkinsonian syndromes. Neurobiol Dis 41(2):377–384

    CAS  PubMed  Google Scholar 

  146. Shah N, Frey KA, Muller ML, Petrou M, Kotagal V, Koeppe RA et al (2016) Striatal and cortical beta-amyloidopathy and cognition in Parkinson’s disease. Mov Disord 31(1):111–117

    CAS  PubMed  Google Scholar 

  147. Dani M, Brooks DJ, Edison P (2016) Tau imaging in neurodegenerative diseases. Eur J Nucl Med Mol Imaging 43(6):1139–1150

    CAS  PubMed  Google Scholar 

  148. Shah M, Catafau AM (2014) Molecular imaging insights into neurodegeneration: focus on tau PET radiotracers. J Nucl Med 55(6):871–874

    CAS  PubMed  Google Scholar 

  149. Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D et al (2013) [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 9(6):666–676

    PubMed  Google Scholar 

  150. Marquie M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG et al (2015) Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol 78(5):787–800

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D et al (2016) Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 79(1):110–119

    PubMed  Google Scholar 

  152. Scholl M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R et al (2016) PET imaging of tau deposition in the aging human brain. Neuron 89(5):971–982

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Gomperts SN, Locascio JJ, Makaretz SJ, Schultz A, Caso C, Vasdev N et al (2016) Tau positron emission tomographic imaging in the lewy body diseases. JAMA Neurol 73(11):1334–1341

    PubMed  PubMed Central  Google Scholar 

  154. Hansen AK, Damholdt MF, Fedorova TD, Knudsen K, Parbo P, Ismail R et al (2017) In Vivo cortical tau in Parkinson’s disease using 18F-AV-1451 positron emission tomography. Mov Disord 32(6):922–927

    CAS  PubMed  Google Scholar 

  155. Winer JR, Maass A, Pressman P, Stiver J, Schonhaut DR, Baker SL et al (2018) Associations between tau, beta-amyloid, and cognition in parkinson disease. JAMA Neurol 75:227–235

    PubMed  Google Scholar 

  156. Kantarci K, Lowe VJ, Boeve BF, Senjem ML, Tosakulwong N, Lesnick TG et al (2017) AV-1451 tau and beta-amyloid positron emission tomography imaging in dementia with Lewy bodies. Ann Neurol 81(1):58–67

    CAS  PubMed  Google Scholar 

  157. Graeff FG (1997) Serotonergic systems. Psychiatr Clin North Am 20(4):723–739

    CAS  PubMed  Google Scholar 

  158. Hornung JP (2003) The human raphe nuclei and the serotonergic system. J Chem Neuroanat 26(4):331–343

    CAS  PubMed  Google Scholar 

  159. Huot P, Fox SH, Brotchie JM (2011) The serotonergic system in Parkinson’s disease. Prog Neurobiol 95(2):163–212

    CAS  PubMed  Google Scholar 

  160. Stockmeier CA (2003) Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J Psychiatr Res 37(5):357–373

    PubMed  Google Scholar 

  161. Nobler MS, Mann JJ, Sackeim HA (1999) Serotonin, cerebral blood flow, and cerebral metabolic rate in geriatric major depression and normal aging. Brain Res Brain Res Rev 30(3):250–263

    CAS  PubMed  Google Scholar 

  162. Meltzer HY (1990) Role of serotonin in depression. Ann N Y Acad Sci 600:486–499; discussion 99–500

    CAS  PubMed  Google Scholar 

  163. Ciranna L (2006) Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology. Curr Neuropharmacol 4(2):101–114

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Robbins TW (2005) Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 493(1):140–146

    CAS  PubMed  Google Scholar 

  165. Brodie BB, Shore PA (1957) A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Ann N Y Acad Sci 66(3):631–642

    CAS  PubMed  Google Scholar 

  166. Albin RL, Koeppe RA, Bohnen NI, Wernette K, Kilbourn MA, Frey KA (2008) Spared caudal brainstem SERT binding in early Parkinson’s disease. J Cereb Blood Flow Metab 28(3):441–444

    CAS  PubMed  Google Scholar 

  167. Gai WP, Blessing WW, Blumbergs PC (1995) Ubiquitin-positive degenerating neurites in the brainstem in Parkinson’s disease. Brain 118(Pt 6):1447–1459

    PubMed  Google Scholar 

  168. Gibb WR (1986) Neuropathology in movement disorders. J Neurol Neurosurg Psychiatry Suppl:55–67

    Google Scholar 

  169. Halliday GM, Blumbergs PC, Cotton RG, Blessing WW, Geffen LB (1990) Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Res 510(1):104–107

    CAS  PubMed  Google Scholar 

  170. Halliday GM, Li YW, Blumbergs PC, Joh TH, Cotton RG, Howe PR et al (1990) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann Neurol 27(4):373–385

    CAS  PubMed  Google Scholar 

  171. Ohama E, Ikuta F (1976) Parkinson’s disease: distribution of Lewy bodies and monoamine neuron system. Acta Neuropathol 34(4):311–319

    CAS  PubMed  Google Scholar 

  172. Fahn S, Libsch LR, Cutler RW (1971) Monoamines in the human neostriatum: topographic distribution in normals and in Parkinson’s disease and their role in akinesia, rigidity, chorea, and tremor. J Neurol Sci 14(4):427–455

    CAS  PubMed  Google Scholar 

  173. Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M et al (2008) Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131(Pt 1):120–131

    PubMed  Google Scholar 

  174. Raisman R, Cash R, Agid Y (1986) Parkinson’s disease: decreased density of 3H-imipramine and 3H-paroxetine binding sites in putamen. Neurology 36(4):556–560

    CAS  PubMed  Google Scholar 

  175. Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 275(2):321–328

    CAS  PubMed  Google Scholar 

  176. Shannak K, Rajput A, Rozdilsky B, Kish S, Gilbert J, Hornykiewicz O (1994) Noradrenaline, dopamine and serotonin levels and metabolism in the human hypothalamus: observations in Parkinson’s disease and normal subjects. Brain Res 639(1):33–41

    CAS  PubMed  Google Scholar 

  177. Wilson JM, Levey AI, Rajput A, Ang L, Guttman M, Shannak K et al (1996) Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson’s disease. Neurology 47(3):718–726

    CAS  PubMed  Google Scholar 

  178. D’Amato RJ, Zweig RM, Whitehouse PJ, Wenk GL, Singer HS, Mayeux R et al (1987) Aminergic systems in Alzheimer’s disease and Parkinson’s disease. Ann Neurol 22(2):229–236

    PubMed  Google Scholar 

  179. Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA (2000) Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med 27(11):1719–1722

    CAS  PubMed  Google Scholar 

  180. Guttman M, Boileau I, Warsh J, Saint-Cyr JA, Ginovart N, McCluskey T et al (2007) Brain serotonin transporter binding in non-depressed patients with Parkinson’s disease. Eur J Neurol 14(5):523–528

    CAS  PubMed  Google Scholar 

  181. Strecker K, Wegner F, Hesse S, Becker GA, Patt M, Meyer PM et al (2011) Preserved serotonin transporter binding in de novo Parkinson’s disease: negative correlation with the dopamine transporter. J Neurol 258(1):19–26

    CAS  PubMed  Google Scholar 

  182. Politis M, Wu K, Loane C, Kiferle L, Molloy S, Brooks DJ et al (2010) Staging of serotonergic dysfunction in Parkinson’s disease: an in vivo 11C-DASB PET study. Neurobiol Dis 40(1):216–221

    CAS  PubMed  Google Scholar 

  183. Boileau I, Warsh JJ, Guttman M, Saint-Cyr JA, McCluskey T, Rusjan P et al (2008) Elevated serotonin transporter binding in depressed patients with Parkinson’s disease: a preliminary PET study with [11C]DASB. Mov Disord 23(12):1776–1780

    PubMed  Google Scholar 

  184. Politis M, Wu K, Loane C, Turkheimer FE, Molloy S, Brooks DJ et al (2010) Depressive symptoms in PD correlate with higher 5-HTT binding in raphe and limbic structures. Neurology 75(21):1920–1927

    CAS  PubMed  Google Scholar 

  185. Pavese N, Metta V, Bose SK, Chaudhuri KR, Brooks DJ (2010) Fatigue in Parkinson’s disease is linked to striatal and limbic serotonergic dysfunction. Brain 133(11):3434–3443

    PubMed  Google Scholar 

  186. Lelieveld IM, Muller ML, Bohnen NI, Koeppe RA, Chervin RD, Frey KA et al (2012) The role of serotonin in sleep disordered breathing associated with Parkinson disease: a correlative [11C]DASB PET imaging study. PLoS One 7(7):e40166

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Loane C, Wu K, Bain P, Brooks DJ, Piccini P, Politis M (2013) Serotonergic loss in motor circuitries correlates with severity of action-postural tremor in PD. Neurology 80(20):1850–1855

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Qamhawi Z, Towey D, Shah B, Pagano G, Seibyl J, Marek K et al (2015) Clinical correlates of raphe serotonergic dysfunction in early Parkinson’s disease. Brain 138(Pt 10):2964–2973

    PubMed  Google Scholar 

  189. Politis M, Wu K, Loane C, Brooks DJ, Kiferle L, Turkheimer FE et al (2014) Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients. J Clin Invest 124(3):1340–1349

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Roussakis AA, Politis M, Towey D, Piccini P (2016) Serotonin-to-dopamine transporter ratios in Parkinson disease: relevance for dyskinesias. Neurology 86(12):1152–1158

    CAS  PubMed  Google Scholar 

  191. Lee JY, Seo S, Lee JS, Kim HJ, Kim YK, Jeon BS (2015) Putaminal serotonergic innervation: monitoring dyskinesia risk in Parkinson disease. Neurology 85(10):853–860

    CAS  PubMed  Google Scholar 

  192. Smith R, Wu K, Hart T, Loane C, Brooks DJ, Bjorklund A et al (2015) The role of pallidal serotonergic function in Parkinson’s disease dyskinesias: a positron emission tomography study. Neurobiol Aging 36(4):1736–1742

    CAS  PubMed  Google Scholar 

  193. Sporns O (2011) The human connectome: a complex network. Ann N Y Acad Sci 1224:109–125

    PubMed  Google Scholar 

  194. Sporns O (2013) Structure and function of complex brain networks. Dialogues Clin Neurosci 15(3):247–262

    PubMed  PubMed Central  Google Scholar 

  195. Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36(10):587–597

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Peng S, Eidelberg D, Ma Y (2014) Brain network markers of abnormal cerebral glucose metabolism and blood flow in Parkinson’s disease. Neurosci Bull 30(5):823–837

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Spetsieris PG, Ko JH, Tang CC, Nazem A, Sako W, Peng S et al (2015) Metabolic resting-state brain networks in health and disease. Proc Natl Acad Sci U S A 112(8):2563–2568

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T et al (1994) The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 14(5):783–801

    CAS  PubMed  Google Scholar 

  199. Kaasinen V, Maguire RP, Hundemer HP, Leenders KL (2006) Corticostriatal covariance patterns of 6-[18F]fluoro-L-dopa and [18F]fluorodeoxyglucose PET in Parkinson’s disease. J Neurol 253(3):340–348

    CAS  PubMed  Google Scholar 

  200. Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D (2007) Metabolic brain networks associated with cognitive function in Parkinson’s disease. NeuroImage 34(2):714–723

    PubMed  Google Scholar 

  201. Fitzpatrick T, Mattis P, Eidelberg D (2010) Functional imaging of cognitive impairment in Parkinson’s disease. Clin EEG Neurosci 41(3):119–126

    CAS  PubMed  Google Scholar 

  202. Colloby SJ, McKeith IG, Burn DJ, Wyper DJ, O’Brien JT, Taylor JP (2016) Cholinergic and perfusion brain networks in Parkinson disease dementia. Neurology 87(2):178–185

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Isaias IU, Spiegel J, Brumberg J, Cosgrove KP, Marotta G, Oishi N et al (2014) Nicotinic acetylcholine receptor density in cognitively intact subjects at an early stage of Parkinson’s disease. Front Aging Neurosci 6:213

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Studies by our group reported in this chapter (Bohnen, Müller, Albin, Frey, and colleagues) were in part supported by NIH grants NS015655, NS099535, NS091856, and NS070856.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn L. T. M. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Müller, M.L.T.M., Bohnen, N.I. (2018). In Vivo Positron Emission Tomography of Extrastriatal Non-Dopaminergic Pathology in Parkinson Disease. In: Habas, C. (eds) The Neuroimaging of Brain Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-78926-2_7

Download citation

Publish with us

Policies and ethics