Skip to main content
Log in

Compressive Properties of Metal Matrix Syntactic Foams in Free and Constrained Compression

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Metal matrix syntactic foam (MMSF) blocks were produced by an inert gas-assisted pressure infiltration technique. MMSFs are advanced hollow sphere reinforced-composite materials having promising application in the fields of aviation, transport, and automotive engineering, as well as in civil engineering. The produced blocks were investigated in free and constrained compression modes, and besides the characteristic mechanical properties, their deformation mechanisms and failure modes were studied. In the tests, the chemical composition of the matrix material, the size of the reinforcing ceramic hollow spheres, the applied heat treatment, and the compression mode were considered as investigation parameters. The monitored mechanical properties were the compressive strength, the fracture strain, the structural stiffness, the fracture energy, and the overall absorbed energy. These characteristics were strongly influenced by the test parameters. By the proper selection of the matrix and the reinforcement and by proper design, the mechanical properties of the MMSFs can be effectively tailored for specific and given applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Peroni, M. Scapin, M. Avalle, J. Weise, and D. Lehmhus, Mater. Sci. Eng. A 552, 364 (2012).

    Article  Google Scholar 

  2. L. Peroni, M. Scapin, M. Avalle, J. Weise, D. Lehmhus, J. Baumeister, and M. Busse, Adv. Eng. Mater. 14, 909 (2012).

    Article  Google Scholar 

  3. J. Weise, D. Lehmhus, J. Baumeister, R. Kun, M. Bayoumi, and M. Busse, Steel Res. Int. 85, 486 (2013).

    Google Scholar 

  4. N. Babcsán, D. Leitlmeier, and J. Banhart, Colloid Surf. A 261, 123 (2005).

    Article  Google Scholar 

  5. N. Babcsán, F.G. Moreno, and J. Banhart, Colloid Surf. A 309, 254 (2007).

    Article  Google Scholar 

  6. J.A. Santa Maria, B.F. Schultz, J.B. Ferguson, and P.K. Rohatgi, Mater. Sci. Eng. A 582, 415 (2013).

    Article  Google Scholar 

  7. J.B. Ferguson, J.A. Santa Maria, B.F. Schultz, and P.K. Rohatgi, Mater. Sci. Eng. A 582, 423 (2013).

    Article  Google Scholar 

  8. J.A. Santa Maria, B.F. Schultz, J.B. Ferguson, N. Gupta, and P.K. Rohatgi, J. Mater. Sci. 49, 1267 (2014).

    Google Scholar 

  9. G.H. Wu, Z.Y. Dou, D.L. Sun, L.T. Jiang, B.S. Ding, and B.F. He, Scripta Mater. 56, 221 (2007).

    Article  Google Scholar 

  10. R.A. Palmer, K. Gao, T.M. Doan, L. Green, and G. Cavallaro, Mater. Sci. Eng. A 464, 85 (2007).

    Article  Google Scholar 

  11. P.K. Rohatgi, J.K. Kim, N. Gupta, S. Alaraj, and A. Daoud, Compos. Part A 37, 430 (2006).

    Article  Google Scholar 

  12. P.K. Rohatgi, N. Gupta, B.F. Schultz, and D.D. Luong, JOM 63 (2), 36 (2011).

    Google Scholar 

  13. M. Kiser, M.Y. He, and F.W. Zok, Acta Mater. 47, 2685 (1999).

    Article  Google Scholar 

  14. D.K. Balch, J.G. O’Dwyer, G.R. Davis, C.M. Cady, G.T. Gray, and D.C. Dunand, Mater. Sci. Eng. A 391, 408 (2005).

    Article  Google Scholar 

  15. D.K. Balch and D.C. Dunand, Acta Mater. 54, 1501 (2006).

    Article  Google Scholar 

  16. X.F. Tao, L.P. Zhang, and Y.Y. Zhao, Mater. Des. 30, 2732 (2009).

    Article  Google Scholar 

  17. X.F. Tao and Y.Y. Zhao, Scripta Mater. 61, 461 (2009).

    Article  Google Scholar 

  18. X.F. Tao and Y.Y. Zhao, Mater. Sci. Eng. A 549, 228 (2012).

    Article  Google Scholar 

  19. Z.Y. Dou, L.T. Jiang, G.H. Wu, Q. Zhang, Z.Y. Xiu, and G.Q. Chen, Scripta Mater. 57, 945 (2007).

    Article  Google Scholar 

  20. A. Rabiei and A.T. O’Neill, Mater. Sci. Eng. A 404, 159 (2005).

    Article  Google Scholar 

  21. L.J. Vendra and A. Rabiei, Mater. Sci. Eng. A 465, 59 (2007).

    Article  Google Scholar 

  22. A. Rabiei and M. Garcia-Avila, Mater. Sci. Eng. A 564, 539 (2013).

    Article  Google Scholar 

  23. D.P. Mondal, S. Das, N. Ramakrishnan, and K. Uday Bhasker, Compos. Part A 40, 279 (2009).

    Article  Google Scholar 

  24. D.P. Mondal, S. Das, and N. Jha, Mater. Des. 30, 2563 (2009).

    Article  Google Scholar 

  25. D.P. Mondal, N. Jha, A. Badkul, S. Das, and R. Khedle, Mater. Sci. Eng. A 534, 521 (2012).

    Article  Google Scholar 

  26. D.P. Mondal, N. Jha, B. Gull, S. Das, and A. Badkul, Mater. Sci. Eng. A 560, 601 (2013).

    Article  Google Scholar 

  27. D.P. Mondal, M.D. Goel, and S. Das, Mater. Des. 30, 1268 (2009).

    Article  Google Scholar 

  28. O. Couteau and D.C. Dunand, Mater. Sci. Eng. A 488, 573 (2008).

    Article  Google Scholar 

  29. M. Ramachandra and K. Radhakrishna, Wear 262, 1450 (2007).

    Article  Google Scholar 

  30. M. Ramachandra and K. Radhakrishna, J. Mater. Sci. 40, 5989 (2005).

    Article  Google Scholar 

  31. P.K. Rohatgi and R.Q. Guo, Tribol. Lett. 3, 339 (1997).

    Article  Google Scholar 

  32. I. Orbulov and Á. Németh, Per. Pol. Mech. Eng. 53, 93 (2009).

    Article  Google Scholar 

  33. T. Bárczy and G. Kaptay, Mater. Sci. Forum 473–474, 297 (2005).

    Article  Google Scholar 

  34. K.P. Trumble, Acta Mater. 46, 2363 (1998).

    Article  Google Scholar 

  35. P.K. Rohatgi, R.Q. Guo, H. Iksan, E.J. Borchelt, and R. Asthana, Mater. Sci. Eng. A 244, 22 (1998).

    Article  Google Scholar 

  36. I.N. Orbulov, Mater. Sci. Eng. A 583, 11 (2013).

    Article  Google Scholar 

  37. I.N. Orbulov and J. Dobránszky, Per. Pol. Mech. Eng. 52, 35 (2008).

    Article  Google Scholar 

  38. L. Bardella and F. Genna, Int. J. Sol. Struct. 38, 307 (2001).

    Article  MATH  Google Scholar 

  39. L. Bardella and F. Genna, Int. J. Sol. Struct. 38, 7235 (2001).

    Article  MATH  Google Scholar 

  40. P.R. Marur, Mater. Lett. 59, 1954 (2005).

    Article  Google Scholar 

  41. P.R. Marur, Comput. Mater. Sci. 46, 327 (2009).

    Article  Google Scholar 

  42. P.R. Marur, Finite Elem. Anal. Des. 46, 1001 (2010).

    Article  Google Scholar 

  43. I.N. Orbulov and K. Májlinger, Mater. Des. 49, 1 (2013).

    Article  Google Scholar 

  44. H.M. Jaeger and S.R. Nagel, Science 5051, 1523 (1992).

    Article  Google Scholar 

  45. I.N. Orbulov and J. Ginsztler, Compos. Part A 43, 553 (2012).

    Article  Google Scholar 

  46. Hollomet GmbH, http://www.hollomet.com/home.html. Accessed 4 Mar 2014.

  47. Envirospheres Ltd., http://www.envirospheres.com/products.asp. Accessed 4 Mar 2014.

  48. I.N. Orbulov, Mater. Sci. Eng. A 555, 52 (2012).

    Google Scholar 

  49. DIN 50134, Testing of Metallic Materials Compression Test of Metallic Cellular Materials, 2008.

Download references

Acknowledgements

This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 National Excellence Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Norbert Orbulov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orbulov, I.N., Májlinger, K. Compressive Properties of Metal Matrix Syntactic Foams in Free and Constrained Compression. JOM 66, 882–891 (2014). https://doi.org/10.1007/s11837-014-0914-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-0914-2

Keywords

Navigation