Skip to main content

Advertisement

Log in

On the bending behaviour and the failure mechanisms of grid-reinforced aluminium foam cylinders by using an experimental/numerical approach

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Metal foams are attracting interest in both aerospace and automotive industries due to their intriguing properties such as high stiffness coupled with low specific weight, good absorbing energy capabilities and flame resistance. To date, many researchers are trying to develop innovative solutions for the improvement of the mechanical properties of metal foams keeping the light-weight condition, with the scope to extend their potential application field. In this scenario, an advanced solution was here proposed; in particular, an innovative manufacturing process was presented for the production of steel grid–reinforced closed-cell aluminium foam cylinders in one single step by using the powder compact melting technique. The bending properties of plain, as well as reinforced, foam systems were experimentally tested and extensively discussed. An original finite element model was developed and validated for the analysis of the bending behaviour and the synergistic action of each component constituting the hybrid system, with a special focus on the failure mechanisms occurring under specified load conditions. The outcomes showed an increase of the mechanical properties of the reinforced systems due to the action of the light-weight mesh grid reinforcement that delays the failure of the structure. The solution proposed shows promises of being a useful method to expand the industrial applications of metal foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Viscusi A, Ammendola P, Astarita A, Raganati F, Scherillo F, Squillace A, Chirone R, Carrino L (2016) Aluminum foam made via a new method based on cold gas dynamic sprayed powders mixed through sound assisted fluidization technique. J Mater Process Technol 231:265–276. https://doi.org/10.1016/j.jmatprotec.2015.12.030

    Article  Google Scholar 

  2. Rubino F, Ammendola P, Astarita A, Raganati F, Squillace A, Viscusi A, Chirone R, Carrino L (2015) An innovative method to produce metal foam using cold gas dynamic spray process assisted by fluidized bed mixing of precursors. Key Eng Mater 651–653:913–918. https://doi.org/10.4028/www.scientific.net/KEM.651-653.913

    Article  Google Scholar 

  3. Ashby MF (2000) Metal foams : a design guide. Butterworth-Heinemann

  4. Deshpande VS, Fleck NA (2000) High strain rate compressive behaviour of aluminium alloy foams. Int J Impact Eng 24:277–298. https://doi.org/10.1016/S0734-743X(99)00153-0

    Article  Google Scholar 

  5. Banhart J (2005) Aluminium foams for lighter vehicles. Int J Veh Des 37:114–125. https://doi.org/10.1504/IJVD.2005.006640

    Article  Google Scholar 

  6. Idris MI, Vodenitcharova T, Hoffman M (2009) Mechanical behaviour and energy absorption of closed-cell aluminium foam panels in uniaxial compression. Mater Sci Eng A 517:37–45. https://doi.org/10.1016/j.msea.2009.03.067

    Article  Google Scholar 

  7. Rajak DK, Kumaraswamidhas LA, Das S (2014) An energy absorption behaviour of foam filled structures. Procedia Mater Sci 5:164–172. https://doi.org/10.1016/j.mspro.2014.07.254

    Article  Google Scholar 

  8. Peroni L, Avalle M, Peroni M (2008) The mechanical behaviour of aluminium foam structures in different loading conditions. Int J Impact Eng 35:644–658. https://doi.org/10.1016/j.ijimpeng.2007.02.007

    Article  MATH  Google Scholar 

  9. Hashim UR, Jumahat A, Ismail MH, Razali RNM (2014) Fabrication and characterisation of carbon fibre reinforced polymer rods with aluminium foam core. Mater Res Innov 18:S6–204-S6-208. https://doi.org/10.1179/1432891714Z.000000000957

    Article  Google Scholar 

  10. Styles M, Compston P, Kalyanasundaram S (2007) The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures. Compos Struct 80:532–538. https://doi.org/10.1016/j.compstruct.2006.07.002

    Article  Google Scholar 

  11. Carrino L, Durante M, Franchitti S, Sorrentino L (2012) Mechanical performance analysis of hybrid metal-foam/composite samples. Int J Adv Manuf Technol 60:181–190. https://doi.org/10.1007/s00170-011-3603-0

    Article  Google Scholar 

  12. Formisano A, Durante M (2017) Mechanical characterization and fem modeling of hybrid metal foam/bio-composite samples. Int Rev Model Simulations 10:320–327. https://doi.org/10.15866/iremos.v10i5.13687

    Article  Google Scholar 

  13. Rajak DK, Kumaraswamidhas LA, Das S (2016) Investigation and characterisation of aluminium alloy foams with TiH 2 as a foaming agent. Mater Sci Technol 32:1338–1345. https://doi.org/10.1080/02670836.2015.1123846

    Article  Google Scholar 

  14. Wang X-Z, Wu L-Z, Wang S-X (2009) Tensile and shear properties of aluminium foam. Mater Technol 24:161–165. https://doi.org/10.1179/106678509X12475884746705

    Article  Google Scholar 

  15. Giancane S, De Giorgi M, Nobile R, Dattoma V (2014) Shear characterization of aluminum foams by digital image correlation. Mech Adv Mater Struct 21:553–558. https://doi.org/10.1080/15376494.2012.699598

    Article  Google Scholar 

  16. Raj RE, Daniel BSS (2008) Prediction of compressive properties of closed-cell aluminum foam using artificial neural network. Comput Mater Sci 43:767–773. https://doi.org/10.1016/j.commatsci.2008.01.041

    Article  Google Scholar 

  17. Zhou J, Soboyejo WO (2004) Mechanics modeling of the compressive stiffness and strength of open-celled aluminum foams. Mater Manuf Process 19:863–882. https://doi.org/10.1081/AMP-200030584

    Article  Google Scholar 

  18. Zhang X, Wu Y, Tang L, Liu Z, Jiang Z, Liu Y, Xi H (2018) Modeling and computing parameters of three-dimensional Voronoi models in nonlinear finite element simulation of closed-cell metallic foams. Mech Adv Mater Struct 25:1265–1275. https://doi.org/10.1080/15376494.2016.1190426

    Article  Google Scholar 

  19. Gagliardi F, Umbrello D, Filice L et al (2009) Simulation of aluminum foam behavior in compression test. Arab J Sci Eng 34:129–137 https://ajse.kfupm.edu.sa/articles/341c_p.13.pdf

    Google Scholar 

  20. Czekanski A, Elbestawi MA, Meguid SA (2005) On the FE modeling of closed-cell aluminum foam. Int J Mech Mater Des 2:23–34. https://doi.org/10.1007/s10999-005-0518-7

    Article  Google Scholar 

  21. Formisano A (2017) Shell-based numerical modelling and experimental validation of closed-cell aluminum foams. Int Rev Model Simulations 10:55–61. https://doi.org/10.15866/iremos.v10i1.11820

    Article  Google Scholar 

  22. Styles M, Compston P, Kalyanasundaram S (2008) Finite element modelling of core thickness effects in aluminium foam/composite sandwich structures under flexural loading. Compos Struct 86:227–232. https://doi.org/10.1016/j.compstruct.2008.03.024

    Article  Google Scholar 

  23. Liu C, Zhang YX, Ye L (2017) High velocity impact responses of sandwich panels with metal fibre laminate skins and aluminium foam core. Int J Impact Eng 100:139–153. https://doi.org/10.1016/j.ijimpeng.2016.09.004

    Article  Google Scholar 

  24. Rizov V, Shipsha A, Zenkert D (2005) Indentation study of foam core sandwich composite panels. Compos Struct 69:95–102. https://doi.org/10.1016/j.compstruct.2004.05.013

    Article  Google Scholar 

  25. Mohan K, Yip T-H, Sridhar I, Seow HP (2007) Effect of face sheet material on the indentation response of metallic foams. J Mater Sci 42:3714–3723. https://doi.org/10.1007/s10853-006-0373-4

    Article  Google Scholar 

  26. Mohan K, Yip TH, Idapalapati S, Chen Z (2011) Impact response of aluminum foam core sandwich structures. Mater Sci Eng A 529:94–101. https://doi.org/10.1016/j.msea.2011.08.066

    Article  Google Scholar 

  27. Vaidya UK, Pillay S, Bartus S, Ulven CA, Grow DT, Mathew B (2006) Impact and post-impact vibration response of protective metal foam composite sandwich plates. Mater Sci Eng A 428:59–66. https://doi.org/10.1016/j.msea.2006.04.114

    Article  Google Scholar 

  28. Formisano A, Carrino L, De Fazio D et al (2018) Enhanced aluminium foam based cylindrical sandwiches: bending behaviour and numerical modeling. Int Rev Model Simulations 11:198–205. https://doi.org/10.15866/iremos.v11i4.15631

    Article  Google Scholar 

  29. An Y, Yang S, Zhao E, Wang Z (2017) Characterization of metal grid-structure reinforced aluminum foam under quasi-static bending loads. Compos Struct 178:288–296. https://doi.org/10.1016/j.compstruct.2017.07.031

    Article  Google Scholar 

  30. Formisano A, Barone A, Carrino L, et al (2018) Improvement of the mechanical properties of reinforced aluminum foam samples. In: AIP conference proceedings. P 100007

  31. Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46:559–632. https://doi.org/10.1016/S0079-6425(00)00002-5

    Article  Google Scholar 

  32. https://www.matweb.com/overview-of-materials-for-T-300-Series-Stainless-Steel. Accessed 13 Dec 2018

  33. McCullough KYG, Fleck NA, Ashby MF (1999) Uniaxial stress–strain behaviour of aluminium alloy foams. Acta Mater 47:2323–2330. https://doi.org/10.1016/S1359-6454(99)00128-7

    Article  Google Scholar 

  34. Dassault Systèmes Simulia Corp (2010) ABAQUS/Explicit 6.10 user manual. Providence

  35. Deshpande VS, Fleck NA (2000) Isotropic constitutive models for metallic foams. J Mech Phys Solids 48:1253–1283. https://doi.org/10.1016/S0022-5096(99)00082-4

    Article  MATH  Google Scholar 

  36. Boyce AM, Deshpande VS, Fleck NA (2017) On the indentation resistance of a pc layer on PVC foam substrate. Adv Eng Mater 19:1700075. https://doi.org/10.1002/adem.201700075

    Article  Google Scholar 

  37. Sridhar I, Fleck NA (2005) The multiaxial yield behaviour of an aluminium alloy foam. J Mater Sci 40:4005–4008. https://doi.org/10.1007/s10853-005-1916-9

    Article  Google Scholar 

  38. Mccullough KYG, Fleck NA, Ashby MF (1999) Toughness of aluminium alloy foams. Acta Mater 47:2331–2343. https://doi.org/10.1016/S1359-6454(99)00125-1

    Article  Google Scholar 

  39. Mills WJ (1997) Fracture toughness of type 304 and 316 stainless steels and their welds. Int Mater Rev 42:45–82. https://doi.org/10.1179/imr.1997.42.2.45

    Article  Google Scholar 

  40. Picker CTI (1983) The fracture toughness of type 316 steel and weld metal. Spec Meet Mech Prop Struct Mater Incl Environ Eff 19:915–937

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Viscusi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viscusi, A., Carrino, L., Durante, M. et al. On the bending behaviour and the failure mechanisms of grid-reinforced aluminium foam cylinders by using an experimental/numerical approach. Int J Adv Manuf Technol 106, 1683–1693 (2020). https://doi.org/10.1007/s00170-019-04414-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04414-6

Keywords

Navigation