Skip to main content
Log in

Global Approach of Tribomechanical Development of Hybrid Aluminium Matrix Syntactic Foams

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Hybrid syntactic foams with AlSi12 aluminium matrix were produced by pressure infiltration. The volume ratio of iron to ceramic hollow sphere reinforcement (in the same size range) was varied, and hybrid syntactic foams were also produced with bimodal size ceramic reinforcement. Previously, a very detailed analysis of the mechanical properties of the composites was made with quasi-static compression tests, and their tribological properties were investigated by pin-on-disc method in dry and lubricated conditions. The present article establishes and clarifies the correlations between mechanical and tribological properties. The coefficient of friction, height loss of the specimens and specific wear showed good correlation with different mechanical parameters, e.g. density, structural stiffness and yield strength. The established trends and correlations between mechanical and tribological behaviour enable a better understanding of materials design and selection for further applications of mechanically loaded sliding machine parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gupta, N., Rohatgi, K.P.: Metal Matrix Syntactic Foams, p. 352. DEStech Publications, Inc., Lancaster (2014). ISBN 978-1-932078-83-1

    Google Scholar 

  2. Luong, D.D., Strbik, O.M., Hammond, V.H., Gupta, N., Cho, K.: Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization at quasi-static and high strain rates. J. Alloys Compd. 550, 412 (2013). doi:10.1016/j.jallcom.2012.10.171

    Article  Google Scholar 

  3. Santa Maria, J.A., Schultz, B.F., Ferguson, J.B., Guptan, N., Rohatgi, P.K.: Effect of hollow sphere size and size distribution on the quasi-static and high strain rate compressive properties of Al-A380-Al2O3 syntactic foams. J. Mater. Sci. 49, 1267 (2014). doi:10.1007/s10853-013-7810-y

    Article  Google Scholar 

  4. Rohatgi, P.K., Gupta, N., Schultz, B.F., Luong, D.D.: The synthesis, compressive properties, and applications of metal matrix syntactic foams. JOM 63(2), 36 (2011). doi:10.1007/s11837-011-0026-1

    Google Scholar 

  5. Luong, D.D., Gupta, N., Daoud, A., Rohatgi, P.K.: High strain rate compressive characterization of aluminum alloy/fly ash cenosphere composites. JOM 63(2), 53 (2011). doi:10.1007/s11837-011-0029-y

    Google Scholar 

  6. Luong, D.D., Gupta, N., Rohatgi, P.K.: The high strain rate compressive response of Mg–Al alloy/fly Ash cenosphere composites. JOM 63(2), 48 (2011). doi:10.1007/s11837-011-0028-z

    Google Scholar 

  7. Cox, J., Luong, D.D., Shunmugasamy, V.C., GuptaN, Strbik I.I.I.O.M., Cho, K.: Dynamic and thermal properties of aluminum alloy A356/silicon carbide hollow particle syntactic foams. Metals 4, 530 (2014). doi:10.3390/met4040530

    Article  Google Scholar 

  8. Rabiei, A., Garcia-Avila, M.: Effect of various parameters on properties of composite steel foams under variety of loading rates. Mater. Sci. Eng., A 564, 539 (2013). doi:10.1016/j.msea.2012.11.108

    Article  Google Scholar 

  9. Alvandi-Tabrizi, Y., Whisler, D.A., Kim, H., Rabiei, A.: High strain rate behavior of composite metal foam. Mater. Sci. Eng., A 631, 248 (2015). doi:10.1016/j.msea.2015.02.027

    Article  Google Scholar 

  10. Alvandi-Tabrizi, Y., Rabiei, A.: Use of composite metal foam for improving absorption of collision forces. Procedia Mater. Sci. 4, 377 (2014). doi:10.1016/j.mspro.2014.07.577

    Article  Google Scholar 

  11. Taherishargh, M., Belova, I.V., Murch, G.E., Fiedler, T.: Low-density expanded perlite-aluminium syntactic foam. Mater. Sci. Eng., A 64, 127 (2014). doi:10.1016/j.msea.2014.03.003

    Article  Google Scholar 

  12. Taherishargh, M., Belova, I.V., Murch, G.E., Fiedler, T.: On the mechanical properties of heat-treated expanded perlite–aluminium syntactic foam. Mater. Des. 63, 375 (2014). doi:10.1016/j.matdes.2014.06.019

    Article  Google Scholar 

  13. Taherishargh, M., Sulong, M.A., Belova, I.V., Murch, G.E., Fiedler, T.: On the particle size effect in expanded perlite aluminium syntactic foam. Mater. Des. 66, 294 (2015). doi:10.1016/j.matdes.2014.10.073

    Article  Google Scholar 

  14. Taherishargh, M., Belova, I.V., Murch, G.E., Fiedler, T.: Pumice/aluminium syntactic foam. Mater. Sci. Eng., A 635, 102 (2015). doi:10.1016/j.msea.2015.03.061

    Article  Google Scholar 

  15. Fiedler, T., Taherishargh, M., Krstulović-Opara, L., Vesenjak, M.: Dynamic compressive loading of expanded perlite/aluminum syntactic foam. Mater. Sci. Eng., A 626, 296 (2015). doi:10.1016/j.msea.2014.12.032

    Article  Google Scholar 

  16. Taherishargh, M., Vesenjak, M., Belova, I.V., Krstulović-Opara, L., Murch, G.E., Fiedler, T.: In situ manufacturing and mechanical properties of syntactic foam filled tubes. Mater. Des. 99, 356 (2016). doi:10.1016/j.matdes.2016.03.077

    Google Scholar 

  17. Weise, J., Lehmhus, D., Baumeister, J., Kun, R., Bayoumi, M., Busse, M.: Production and properties of 316L stainless steel cellular materials and syntactic foams. Steel Res. Int. 85(3), 486 (2014). doi:10.1002/srin.201300131

    Article  Google Scholar 

  18. Peroni, L., Scapin, M., Avalle, M., Weise, J., Lehmhus, D.: Dynamic mechanical behavior of syntactic iron foams with glass microspheres. Mater. Sci. Eng., A 522, 364 (2012). doi:10.1016/j.msea.2012.05.053

    Article  Google Scholar 

  19. Lehmhus, D., Weise, J., Baumeister, J., Peroni, L., Scapin, M., Fichera, C., Avalle, M., Busse, M.: Quasi-static and dynamic mechanical performance of glass microsphere- and cenosphere-based 316L syntactic foams. Procedia Mater. Sci. 4, 383 (2014). doi:10.1016/j.mspro.2014.07.578

    Article  Google Scholar 

  20. Peroni, L., Scapin, M., Fichera, C., Lehmhus, D., Weise, J., Baumeister, J., Avalle, M.: Investigation of the mechanical behaviour of AISI 316L stainless steel syntactic foams at different strain-rates. Compos. Part B 66, 430 (2014). doi:10.1016/j.compositesb.2014.06.001

    Article  Google Scholar 

  21. Castro, G., Nutt, S.R.: Synthesis of syntactic steel foam using gravity-fed infiltration. Mater. Sci. Eng. A Struct. 553, 89 (2012). doi:10.1016/j.msea.2012.05.097

    Article  Google Scholar 

  22. Castro, G., Nutt, S.R.: Synthesis of syntactic steel foam using mechanical pressure infiltration. Mater. Sci. Eng., A 535, 274 (2012). doi:10.1016/j.msea.2011.12.084

    Article  Google Scholar 

  23. Goel, M.D., Peroni, M., Solomos, G., Mondal, D.P., Matsagar, V.A., Gupta, A.K., Larcher, M., Marburg, S.: Dynamic compression behavior of cenosphere aluminum alloy syntactic foam. Mater. Des. 42, 418 (2012). doi:10.1016/j.matdes.2012.06.013

    Article  Google Scholar 

  24. Goel, M.D., Mondal, D.P., Yadav, M.S., Gupta, A.K.: Effect of strain rate and relative density on compressive deformation behavior of aluminum cenosphere syntactic foam. Mater. Sci. Eng., A 590, 406 (2014). doi:10.1016/j.msea.2013.10.048

    Article  Google Scholar 

  25. Goel, M.D., Matsagar, V.A., Gupta, A.K., Marburg, S.: Strain rate sensitivity of closed cell aluminum fly ash foam. Trans. Nonferrous Met. Soc. China 23(4), 1080 (2013). doi:10.1016/S1003-6326(13)62569-8

    Article  Google Scholar 

  26. Xue, X.-B., Wang, L.-Q., Wang, M.-M., Lü, W.-J., Zhang, D.: Manufacturing, compressive behaviour and elastic modulus of Ti matrix syntactic foam fabricated by powder metallurgy. Trans. Nonferrous Met. Soc. China 22, 188 (2012). doi:10.1016/S1003-6326(12)61707-5

    Article  Google Scholar 

  27. Xue, X.-B., Zhao, Y.: Ti matrix syntactic foam fabricated by powder metallurgy: particle breakage and elastic modulus. JOM 63(2), 43 (2011). doi:10.1007/s11837-011-0027-0

    Google Scholar 

  28. Orbulov, I.N., Májlinger, K.: Microstructural aspects of ceramic hollow microspheres reinforced metal matrix composites. Int. J. Mater. Res. 9, 903 (2013). doi:10.3139/146.110944

    Article  Google Scholar 

  29. Kozma, I., Zsoldos, I., Dorogi, G., Papp, S.: Computer tomography based reconstruction of metal matrix syntactic foams. Period. Polytech. Mech. Eng. 58, 87 (2014). doi:10.3311/PPme.7337

    Article  Google Scholar 

  30. Rohatgi, P.K., Guo, R.Q.: Mechanism of abrasive wear of Al–Si hypoeutectic alloycontaining 5 vol% fly ash. Tribol. Lett. 3, 339 (1997). doi:10.1023/a:1019109911923

    Article  Google Scholar 

  31. Ramachandra, M., Radhakrishna, K.: Synthesis-microstructure-mechanical properties-wear and corrosion behavior of an Al–Si (12%): flyash metal matrix composite. J. Mater. Sci. 40, 5989 (2005). doi:10.1007/s10853-005-1303-6

    Article  Google Scholar 

  32. Ramachandra, M., Radhakrishna, K.: Effect of reinforcement of flyash on sliding wear, slurry erosive wear and corrosive behavior of aluminium matrix composite. Wear 262, 1450 (2007). doi:10.1016/j.wear.2007.01.026

    Article  Google Scholar 

  33. Mondal, D.P., Das, S., Jha, N.: Dry sliding wear behaviour of aluminum syntactic foam. Mater. Des. 30, 2563–2568 (2009). doi:10.1016/j.matdes.2008.09.034

    Article  Google Scholar 

  34. Uthayakumar, M., Kumaran, S.T., Aravindan, S.: Dry sliding friction and wear studies of fly ash reinforced AA-6351 metal matrix composites. Tribol, Adv (2013). doi:10.1155/2013/365602

    Google Scholar 

  35. Sudarshan, M.K.S.: Dry sliding wear of fly ash particle reinforced A356 Al composites. Wear 265, 349 (2008). doi:10.1016/j.wear.2007.11.009

    Article  Google Scholar 

  36. Saravanan, V., Thyla, P.R., Balakrishnan, S.R.: The dry sliding wear of cenosphere-aluminum metal matrix composite. Adv. Compos. Lett. 23(3), 49 (2015)

    Google Scholar 

  37. Kumar, K.A.R., Balamurugan, K., Gnanaraj, D.: Hardness, tribology and microstructural studies on aluminium: flyash metal matrix composites. J. Sci. Ind. Res. 74(3), 165 (2015)

    Google Scholar 

  38. Kumar, V., Gupta, R.D., Batra, N.K.: Comparison of mechanical properties and effect of sliding velocity on wear properties of Al 6061, Mg 4%, fly ash and Al 6061, Mg 4%, graphite 4%, fly ash hybrid metal matrix composite. Procedia Mater. Sci. 6, 1365 (2014). doi:10.1016/j.mspro.2014.07.116

    Article  Google Scholar 

  39. Muthu, P., Rajesh, S.: Dry sliding wear behaviour of aluminum/sic/flyash hybrid metal matrix composites. J. Aust. Ceram. Soc. 52(1), 125 (2016)

    Google Scholar 

  40. Májlinger, K.: Wear properties of hybrid AlSi12 matrix syntactic foams. Int. J. Mater. Res. 106(11), 1165 (2015). doi:10.3139/146.111290

    Article  Google Scholar 

  41. Májlinger, K., Bozóki, B., Kalácska, G., Keresztes, R., Zsidai, L.: Tribological properties of hybrid aluminum matrix syntactic foams. Tribol. Int. 99, 211 (2016). doi:10.1016/j.triboint.2016.03.032

    Article  Google Scholar 

  42. Kalácska, G.: An engineering approach to dry friction behaviour of numerous engineering plastics with respect to the mechanical properties. Exp. Polym. Lett. 7(2), 199 (2013). doi:10.3144/expresspolymlett.2013.18

    Article  Google Scholar 

  43. http://hollomet.com/produkte.html. Accessed 10 Aug 2014

  44. http://www.envirospheres.com/products_bl.asp. Accessed 10 March 2015

  45. Jaegerand, H.M., Nagel, S.R.: Physics of the granular state. Science 255, 1523 (1992). doi:10.1126/science.255.5051.1523

    Article  Google Scholar 

  46. Torquato, S., Truskett, T.M., Debenedetti, P.G.: Is random close packing of spheres well defined? Phys. Rev. Lett. 84, 2064 (2000). doi:10.1103/PhysRevLett.84.2064

    Article  Google Scholar 

  47. Orbulov, I.N.: Metal matrix syntactic foams produced by pressure infiltration: the effect of infiltration parameters. Sci. Eng. A, Mater (2013). doi:10.1016/j.msea.2013.06.066

    Google Scholar 

  48. Májlinger, K., Orbulov, I.N.: Characteristic compressive properties of hybrid metal matrix syntactic foams. Mater. Sci. Eng., A 606, 248 (2014). doi:10.1016/j.msea.2014.03.100

    Article  Google Scholar 

  49. Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G.: Metal Foams: A Design Guide. Butterworth-Heinemann, Boston (2010). ISBN 0750672196

    Google Scholar 

  50. Szlancsik, A., Katona, B., Májlinger, K., Orbulov, I.N.: Compressive behavior and microstructural characteristics of iron hollow sphere filled aluminum matrix syntactic foams. Materials 8(11), 7926 (2015). doi:10.3390/ma8115432

    Article  Google Scholar 

  51. Bowden, F.P., Tabor, D.: Friction and Lubrication of Solids. Oxford University Press, London (1954). ISBN 9780198507772

    Google Scholar 

Download references

Acknowledgements

This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (L. Zsidai, Grant Number: BO/00127/13/6 and I.N. Orbulov, Grant Number: BO/00294/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kornél Májlinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Májlinger, K., Kalácska, G., Orbulov, I.N. et al. Global Approach of Tribomechanical Development of Hybrid Aluminium Matrix Syntactic Foams. Tribol Lett 65, 16 (2017). https://doi.org/10.1007/s11249-016-0798-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0798-0

Keywords

Navigation