Skip to main content
Log in

On the Consequences of the Adoption of the Zaremba–Jaumann Objective Stress Rate in FEM Codes

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper deals with a particular issue of computational mechanics in main FEM codes nowadays available, i.e. the outcomes of implementations of large strain constitutive models based on the adoption of so-called objective stress rates, in order to satisfy objectivity requirements. The point here is that of directly inquiring whether well-known incoherencies due to the adoption of the Zaremba–Jaumann objective stress rate may manifest themselves when the most used elastic and elastoplastic constitutive models are adopted. The present investigation aims at providing a comprehensive review of the theoretical aspects and at developing an informed knowledge to final users of FEM codes, in terms of exposing which constitutive models and FEM implementations may be affected by Zaremba–Jaumann objective stress rate induced incoherencies. Towards this end, local FEM simple shear tests are explored and clearly show that kinematic cases characterized by a non zero spin may be heavily affected by oscillatory incoherencies, which arise for expected cases, i.e. Cauchy stress responses, but also for other less expected cases, i.e. strain responses, whether they are total, elastic or plastic. Beyond local tests, structural simple shear tests are also performed and show as well that oscillatory incoherencies found in local simple shear tests may heavily influence the overall structural outcomes. A non-secondary target of the paper is that of reviewing the relevant scientific and technical literature about objective stress rates, by critically analyzing correlated issues and proposed solutions, considering scientific contributions spanning over a century, keeping specific attention to the treatment of the Zaremba–Jaumann objective stress rate and to the possible flaws related to its adoption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. ANSYS (2011) ANSYS 13.0 documentation. Canonsburg, Pennsylvania, USA

  2. Atluri SN (1984) On constitutive relations at finite strain: hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening. Comput Methods Appl Mech Eng 43(2):137–171

    Article  MATH  Google Scholar 

  3. Atluri SN, Cazzani A (1995) Rotations in computational solid mechanics. Arch Comput Methods Eng 2(1):49–138

    Article  MathSciNet  Google Scholar 

  4. Backhaus G (1988) On the analysis of kinematic hardening at large plastic deformations. Acta Mech 75(1–4):133–151

    Article  MATH  Google Scholar 

  5. Bažant ZP, Vorel J (2013) Energy-conservation error due to use of Green–Naghdi objective stress rate in finite-element codes and its compensation. J Appl Mech 81(2), American Society of Mechanical Engineers (ASME)

  6. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York, ISBN 0-471-98773-5

  7. Benson DJ (1991) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99(2–3):235–394

    MathSciNet  Google Scholar 

  8. Bernstein B (1960) Hypo-elasticity and elasticity. Arch Ration Mech Anal 6(1):89–104

    Article  MATH  Google Scholar 

  9. Bigoni D (2012) Nonlinear solid mechanics. Bifurcation theory and material instability, Cambridge University Press, Cambridge, MA, ISBN 978-1-107-02541-7

  10. Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge, MA, ISBN 0-521-57272-X

  11. Bruhns OT, Xiao H, Meyers A (1999) Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate. Int J Plast 15(5):479–520

    Article  MATH  MathSciNet  Google Scholar 

  12. Bruhns OT, Xiao H, Meyers A (2001) Large-strain response of isotropic-hardening elastoplasticity with logarithmic rate: Swift effect in torsion. Arch Appl Mech 71(6–7):389–404

    Article  MATH  Google Scholar 

  13. Bruhns OT, Xiao H, Meyers A (2003) Some basic issues in traditional Eulerian formulations of finite elastoplasticity. Int J Plast 19(11):2007–2026

    Article  MATH  Google Scholar 

  14. Casey J, Naghdi PM (1988) On the relationship between the Eulerian and Lagrangian descriptions of finite rigid plasticity. Arch Ration Mech Anal 102(4):351–375

    Article  MATH  MathSciNet  Google Scholar 

  15. Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24(10):1642–1693

    Article  MATH  Google Scholar 

  16. Çolak ÖÜ (2004) Modeling of large simple shear using a viscoplastic overstress model and classical plasticity model with different objective stress rates. Acta Mech 167(3–4):171–187

    Article  MATH  Google Scholar 

  17. Cotter BA, Rivlin RS (1955) Tensors associated with time-dependent stress. Q Appl Math 13(2):177–182

    MATH  MathSciNet  Google Scholar 

  18. Dafalias YF (1983) Corotational rates for kinematic hardening at large plastic deformations. J Appl Mech 50(3):561–565

    Article  MATH  Google Scholar 

  19. Dafalias YF (1985) The plastic spin. J Appl Mech 52(4):865–871

    Article  MATH  MathSciNet  Google Scholar 

  20. Dafalias YF (1998) Plastic spin: necessity or redundancy? Int J Plast 14(9):909–931

    Article  MATH  Google Scholar 

  21. Dassault Systèmes (2011) Abaqus 6.10 documentation. Providence, Rhode Island, USA

  22. De Souza Neto EA, Perić D, Owen DRJ (2008) Computational methods for plasticity. Theory and applications, Wiley, New York, ISBN 978-0-470-69452-7

  23. Dienes JK (1979) On the analysis of rotation and stress rate in deforming bodies. Acta Mech 32(4):217–232

    Article  MATH  MathSciNet  Google Scholar 

  24. Dienes JK (1987) A discussion of material rotation and stress rate. Acta Mech 65(1–4):1–11

    Article  MATH  Google Scholar 

  25. Durban D (1990) A comparative study of simple shear at finite strains of elastoplastic solids. Q J Mech Appl Math 43(4):449–465

    Article  MATH  MathSciNet  Google Scholar 

  26. Epstein M (2010) The geometrical language of continuum mechanics. Cambridge University Press, Cambridge, MA, ISBN 978-0-521-19855-4

  27. Epstein M, Maugin GA (1996) On the geometrical material structure of anelasticity. Acta Mech 115(1–4):119–131

    Article  MATH  MathSciNet  Google Scholar 

  28. Eringen AC (1980) Mechanics of continua, 2nd edn, ISBN 0-88275-663-X, first published in 1967, Robert E. Krieger Publishing Company Inc

  29. Eterovic AL, Bathe KJ (1990) A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Int J Numer Methods Eng 30(6):1099–1114

    Article  MATH  Google Scholar 

  30. Fish J, Belytschko T (2007) A first course in finite elements. Wiley, New York, ISBN 978-0-470-03580-1

  31. Gabriel G, Bathe KJ (1995) Some computational issues in large strain elasto-plastic analysis. Comput Struct 56(2–3):249–267

    Article  MATH  Google Scholar 

  32. Gadala MS, Wang J (2000) Computational implementation of stress integration in FE analysis of elasto-plastic large deformation problems. Finite Elem Anal Des 35(4):379–396

    Article  MATH  Google Scholar 

  33. Gambirasio L, Chiodi P, Rizzi E (2010) Analytical and numerical modelling of the Swift effect in elastoplastic torsion. In: Proceedings of the 9th international conference on multiaxial fatigue and fracture (ICMFF9), June 7–9, 2010, University of Parma, Parma, Italy, Proceedings, pp 843–850, ISBN 978-88-95940-31-1, Conference Chairmen: Carpinteri, A., Pook, L.P., Sonsino, C.M

  34. Goddard JD, Miller CD (1966) An inverse for the Jaumann derivative and some applications to the rheology of viscoelastic fluids. Rheol Acta 5(3):177–184

    Article  MATH  Google Scholar 

  35. Govindjee S (1997) Accuracy and stability for integration of Jaumann stress rate equations in spinning bodies. Eng Comput 14(1):14–30

    Article  MATH  Google Scholar 

  36. Green AE, McInnis BC (1967) Generalized hypo-elasticity. Proc R Soc Edinb Sect A Math Phys Sci 67(3):220–230

    MATH  MathSciNet  Google Scholar 

  37. Green AE, Naghdi PM (1965) A general theory of an elastic–plastic continuum. Arch Ration Mech Anal 18(4):251–281

    Article  MATH  MathSciNet  Google Scholar 

  38. Gurtin ME (1981) An introduction to continuum mechanics, monograph in the series Mathematics in Science and Engineering, Number 158, Series Editor Bellman, R., Academic Press Inc, ISBN 0-12-309750-9

  39. Gurtin ME (1983) Topics in finite elasticity, monograph in the series CBMS-NSF regional Conference Series in Applied Mathematics, Number 35, The Society for Industrial and Applied Mathematics

  40. Hashiguchi K (2013) General description of elastoplastic deformation/sliding phenomena of solids in high accuracy and numerical efficiency: subloading surface concept. Arch Comput Methods Eng 20(4):361–417

    Article  MathSciNet  Google Scholar 

  41. Healy BE, Dodds RH Jr (1992) A large strain plasticity model for implicit finite element analyses. Comput Mech 9(2):95–112

    Article  MATH  Google Scholar 

  42. Heckman J, Fish J (2007) Obstacle test for large deformation plasticity problems. Int J Comput Methods Eng Sci Mech 8(6):401–410

    Article  MATH  Google Scholar 

  43. Hill R (1979) Aspects of invariance in solid mechanics. Adv Appl Mech 18:1–75

    Article  Google Scholar 

  44. Hill R (1998) The mathematical theory of plasticity, 2nd edn, first published in 1950, monograph in the series Oxford Classic Texts in the Physical Sciences, Hill, R., Oxford University Press Inc, ISBN 0-19-850367-9

  45. Hoger A (1986) The material time derivative of logarithmic strain. Int J Solids Struct 22(9):1019–1032

    Article  MATH  MathSciNet  Google Scholar 

  46. Hughes TJR (1987) The finite element method. Linear static and dynamic finite element analysis. Prentice-Hall Inc, Englewood Cliffs, NJ, ISBN 0-13-317025-X

  47. Im S, Atluri SN (1987) A study of two finite strain plasticity models: an internal time theory using Mandel’s director concept, and a general isotropic/kinematic-hardening theory. Int J Plast 3(2):163–191

    Article  MATH  Google Scholar 

  48. Jaumann G (1911) Geschlossenes system physikalischer und chemischer differentialgesetze. Sitzungsberichte der Akademie der Wissenschaften, Wien 120:385–530

    MATH  Google Scholar 

  49. Ji W, Waas AM, Bažant ZP (2010) Errors caused by non-work-conjugate stress and strain measures and necessary corrections in finite element programs. J Appl Mech 77(4):1–5

    Article  Google Scholar 

  50. Johnson GC, Bammann DJ (1984) A discussion of stress rates in finite deformation problems. Int J Solids Struct 20(8):725–737

    Article  MATH  Google Scholar 

  51. Kachanov LM (1971) Foundations of the theory of plasticity, 2nd edn, English Translation, ISBN 0-7204-2363-5, monograph in the series North-Holland Series in Applied Mathematics and Mechanics, Number 12, Series Editors Lauwerier, H.A., Koiter, W.T., North-Holland Publishing Company

  52. Kolymbas D, Herle I (2003) Shear and objective stress rates in hypoplasticity. Int J Numer Anal Methods Geomech 27(9):733–744

    Article  MATH  Google Scholar 

  53. Korobeynikov SN (2008) Objective tensor rates and applications in formulation of hyperelastic relations. J Elast 93(2):105–140

  54. Korobeynikov SN (2011) Families of continuous spin tensors and applications in continuum mechanics. Acta Mech 216(1–4):301–332

    Article  MATH  Google Scholar 

  55. Lee EH, Mallett RL, Wertheimer TB (1983) Stress analysis for anisotropic hardening in finite-deformation plasticity. J Appl Mech 50(3):554–560

    Article  MATH  Google Scholar 

  56. Levi-Civita T (2005) The absolute differential calculus. Calculus of tensors, 2nd edn, English Translation, ISBN 978-0486446370, first published in 1927, Dover Publications Inc

  57. Liangsen C, Xinghua Z, Minfu F (1999) The simple shear oscillation and the restrictions to elastic–plastic constitutive relations. Appl Math Mech (English Edition) 20(6):593–603

  58. Lijun S, Lizhou P, Fubao H (1998) Study on the generalized Prandtl–Reuss constitutive equation and the corotational rates of stress tensor. Appl Math Mech (English Edition) 19(8):735–743

  59. Lin RC (2002) Numerical study of consistency of rate constitutive equations with elasticity at finite deformation. Int J Numer Methods Eng 55(9):1053–1077

    Article  MATH  Google Scholar 

  60. Lin RC (2003) Hypoelasticity-based analytical stress solutions in the simple shearing process. J Appl Math Mech (Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM)) 83(3):163–171

  61. Lin RC, Schomburg U, Kletschkowski T (2003) Analytical stress solutions of a closed deformation path with stretching and shearing using the hypoelastic formulations. Eur J Mech A Solids 22(3):443–461

    Article  MATH  Google Scholar 

  62. Liu CS, Hong HK (1999) Non-oscillation criteria for hypoelastic models under simple shear deformation. J Elast 57(3):201–241

    Article  MATH  MathSciNet  Google Scholar 

  63. Liu CS, Hong HK (2001) Using comparison theorem to compare corotational stress rates in the model of perfect elastoplasticity. Int J Solids Struct 38(17):2969–2987

    Article  MATH  MathSciNet  Google Scholar 

  64. Livermore Software Technology Corporation (2011) LS-DYNA 9.71 Revision 5.9419 Documentation. Livermore, CA, USA

  65. Loret B (1983) On the effects of plastic rotation in the finite deformation of anisotropic elastoplastic materials. Mech Mater 2(4):287–304

    Article  Google Scholar 

  66. Lubarda VA (2002) Elastoplasticity theory, monograph in the series Mechanical Engineering Series, Series Editor Kreith, F., CRC Press LLC, ISBN 0-8493-1138-1

  67. Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall Inc, Englewood Cliffs, NJ, ISBN 0-13-561076-1

  68. Marsden JE, Ratiu T, Abraham R (2007) Manifolds, tensor analysis, and applications, 3rd edn, ISBN 0-201-10168-S, first published in 1983, monograph in the series Applied Mathematical Sciences

  69. Masur EF (1965) On tensor rates in continuum mechanics. J Appl Math Phys (Zeitschrift für Angewandte Mathematik und Physik (ZAMP)) 16(2):191–201

  70. Metzger DR, Dubey RN (1987) Corotational rates in constitutive modeling of elastic–plastic deformation. Int J Plast 3(4):341–368

  71. Meyers A, Bruhns OT, Xiao H (2000) Large strain response of kinematic hardening elastoplasticity with the logarithmic rate: Swift effect in torsion. Meccanica 35(3):229–247

    Article  MATH  MathSciNet  Google Scholar 

  72. Meyers A, Bruhns OT, Xiao H (2005) Objective stress rates in repeated elastic deformation cycles. Proc Appl Math Mech 5(1 - Special Issue: GAMM Annual Meeting 2005 - Luxembourg):249–250, John Wiley & Sons Inc

  73. Meyers A, Xiao H, Bruhns OT (2006) Choice of objective rate in single parameter hypoelastic deformation cycles. Comput Struct 84(17–18):1134–1140

    Article  Google Scholar 

  74. Molenkamp F (1986) Limits to the Jaumann stress rate. Int J Numer Anal Methods Geomech (Zeitschrift für Angewandte Mathematik und Physik (ZAMP)) 10(2):151–176

  75. Moon P, Spencer DE (1986) Theory of holors. A generalization of tensors. Cambridge University Press, Cambridge, MA, ISBN 978-0-521-24585-2

  76. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592

    Article  MATH  Google Scholar 

  77. Moss WC (1984) On instabilities in large deformation simple shear loading. Comput Methods Appl Mech Eng 46(3):329–338

    Article  MATH  Google Scholar 

  78. MSC Software (2008) Marc 2008 documentation. Santa Ana, California, USA

  79. Naghdi PM (1990) A critical review of the state of finite plasticity. J Appl Math Phys (Zeitschrift für Angewandte Mathematik und Physik (ZAMP)) 41(3):315–394

  80. Nagtegaal JC, De Jong JE (1981) Some aspects of non-isotropic workhardening in finite strain plasticity. In: Proceedings of research workshop: plasticity of metals at finite strain: theory, experiment and computation, June 29–July 1, 1981, Stanford University, Stanford, CA, USA, pp 65–106. Stanford University—Department of Mechanical Engineering, Aeronautical Engineering and Mechanics, Rensselaer Polytechnic Institute, Division of Applied Mechanics

  81. Nemat-Nasser S (1982) On finite deformation elasto-plasticity. Int J Solids Struct 18(10):857–872

    Article  MATH  Google Scholar 

  82. Noll W (1958) A mathematical theory of the mechanical behavior of continuous media. Arch Ration Mech Anal 2(1):197–226

    Article  MATH  Google Scholar 

  83. Ogden RW (1997) Non-linear elastic deformations, 2nd edn, ISBN 0-486-69648-0, first published in 1984. Ogden. R.W.—Ellis Harwood Ltd., Dover Publications Inc

  84. Oldroyd JG (1950) On the formulation of rheological equations of state. Proc R Soc A Math Phys Eng Sci 200(1063):523–541

  85. Pan WF, Lee TH, Yeh WC (1996) Endochronic analysis for finite elasto-plastic deformation and application to metal tube under torsion and metal rectangular block under biaxial compression. Int J Plast 12(10):1287–1316

    Article  MATH  Google Scholar 

  86. Pinsky PM, Ortiz M, Pister KS (1983) Numerical integration of rate constitutive equations in finite deformation analysis. Comput Methods Appl Mech Eng 40(2):137–158

    Article  MATH  Google Scholar 

  87. Prager W (1962) On higher rates of stress and deformation. J Mech Phys Solids 10(2):133–138

    Article  MATH  MathSciNet  Google Scholar 

  88. Rivlin RS (1949) Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and flexure. Proc R Soc A Math Phys Eng Sci 242(845):173–195

    Article  MATH  MathSciNet  Google Scholar 

  89. Rivlin RS, Smith GF (1987) A note on material frame indifference. Int J Solids Struct 23(12):1639–1643

    Article  MATH  MathSciNet  Google Scholar 

  90. Rizzi E, Carol I (2001) A formulation of anisotropic elastic damage using compact tensor formalism. J Elast 64(2–3):85–109

  91. Roy S, Fossum AF, Dexter RJ (1992) On the use of polar decomposition in the integration of hypoelastic constitutive laws. Int J Eng Sci 30(2):119–133

    Article  MATH  MathSciNet  Google Scholar 

  92. Sansour C, Bednarczyk H (1993) A study on rate-type constitutive equations and the existence of a free energy function. Acta Mech 100(3–4):205–221

    Article  MATH  MathSciNet  Google Scholar 

  93. Scheidler MJ (1991a) Time rates of generalized strain tensors. Part I: component formulas, report BRL-TR-3195, U.S. Army Laboratory Command, Ballistic Research Laboratory, Aberdeen Proving Ground

  94. Scheidler MJ (1991b) Time rates of generalized strain tensors. Part II: approximate basis-free formulas, Report BRL-TR-3279, U.S. Army Laboratory Command, Ballistic Research Laboratory, Aberdeen Proving Ground

  95. Schouten JA (1951) Tensor analysis for physicists. Oxford University Press Inc, Oxford

    MATH  Google Scholar 

  96. Schouten JA, (1954) Ricci-calculus. An introduction to tensor analysis and its geometrical applications, 2nd edn, ISBN 978-3-662-12927-2, first published in 1923, monograph in the series Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete, Number 10, Series Editors Grammel, R., Hopf, E., Hopf, F., Rellich, F., Schmidt, F.K., Van der Waerden, B.L

  97. Simo JC (1988a) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: part I. Continuum formulation. Comput Methods Appl Mech Eng 66(2):199–219

    Article  MATH  MathSciNet  Google Scholar 

  98. Simo JC (1988b) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: part II. Computational aspects. Comput Methods Appl Mech Eng 68(1):1–31

    Article  MATH  Google Scholar 

  99. Simo JC, Hughes TJR (1998) Computational inelasticity, ISBN 0-387-97520-9, monograph in the series Interdisciplinary Applied Mathematics, Number 7, Series Editors Marsden, J.E., Wiggins, S., Sirovich, L

  100. Simo JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput Methods Appl Mech Eng 46(2):201–215

    Article  MATH  Google Scholar 

  101. Sowerby R, Chu E (1984) Rotations, stress rates and strain measures in homogeneous deformation processes. Int J Solids Struct 20(11–12):1037–1048

    Article  MATH  Google Scholar 

  102. Steinmann P (2013) On the roots of continuum mechanics in differential geometry–a review, book chapter in generalized continua from the theory to engineering applications, ISBN 978-3-7091-1371-4, anthological monograph in the series CISM International Centre for Mechanical Sciences: Courses and Lectures, Series Editors Pfeiffer, F., Rammerstorfer, F.G., Salençon, J., Schrefler, B., Serafini, P., Anthology Editors Altenbach, H., Eremeyev, V.A

  103. Svendsen B, Arndt S, Klingbeil D, Sievert R (1998) Hyperelastic models for elastoplasticity with non-linear isotropic and kinematic hardening at large deformation. Int J Solids Struct 35(25):3363–3389

    Article  MATH  Google Scholar 

  104. Szabó L, Balla M (1989) Comparison of some stress rates. Int J Solids Struct 25(3):279–297

    Article  Google Scholar 

  105. Taylor LM, Becker EB (1983) Some computational aspects of large deformation, rate-dependent plasticity problems. Comput Methods Appl Mech Eng 41(3):251–277

    Article  MATH  Google Scholar 

  106. Thomas TY (1955) Kinematically preferred co-ordinate systems. Proc Natl Acad Sci USA 41(10):762–770

    Article  MATH  Google Scholar 

  107. Truesdell CA (1956) Hypo-elastic shear. J Appl Phys 27(5):441–447

    Article  MathSciNet  Google Scholar 

  108. Truesdell CA (1966) The elements of continuum mechanics. Springer

  109. Truesdell CA (1991) A first course in rational continuum mechanics. Volume 1: general concepts, 2nd edn, ISBN 0-12-701300-8, first published in 1977, monograph in the series Pure and Applied Mathematics, Number 71, Series Editors Smith, P.A., Eilenberg, S., Bass, H., Borel, A., Yau, S.T., Academic Press Inc

  110. Truesdell CA, Noll W (2004) The non-linear field theories of mechanics, 3rd edn, ISBN 3-540-02779-3, first published in 1965

  111. Tsakmakis C, Haupt P (1989) On the hypoelastic-idealplastic constitutive model. Acta Mech 80(3–4):273–285

    Article  MATH  Google Scholar 

  112. Valanis KC (1990) Back stress and Jaumann rates in finite plasticity. Int J Plast 6(3):353–367

    Article  MATH  Google Scholar 

  113. Vorel J, Bažant ZP (2014) Review of energy conservation errors in finite element softwares caused by using energy-inconsistent objective stress rates. Adv Eng Softw 72:3–7

  114. Wilkins ML (1963) Calculation of elastic–plastic flow, Report UCRL-7322. University of California, Lawrence Radiation Laboratory

  115. Wu HC (2007) On stress rate and plasticity constitutive equations referred to a body-fixed coordinate system. Int J Plast 23(9):1486–1511

    Article  MATH  Google Scholar 

  116. Wu PD, Van der Giessen E (1991) Analysis of elastic-plastic torsion of circular bars at large strains. Arch Appl Mech 61(2):89–103

    Article  MATH  Google Scholar 

  117. Xia Z, Ellyin F (1993) A stress rate measure for finite elastic plastic deformations. Acta Mech 98(1–4):1–14

    Article  MATH  Google Scholar 

  118. Xiao H, Bruhns OT, Meyers A (1997a) Hypo-elasticity model based upon the logarithmic stress rate. J Elast 47(1):51–68

    Article  MATH  MathSciNet  Google Scholar 

  119. Xiao H, Bruhns OT, Meyers A (1997b) Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech 124(1–4):89–105

    Article  MATH  MathSciNet  Google Scholar 

  120. Xiao H, Bruhns OT, Meyers A (1998) On objective corotational rates and their defining spin tensors. Int J Solids Struct 35(30):4001–4014

    Article  MATH  MathSciNet  Google Scholar 

  121. Xiao H, Bruhns OT, Meyers A (1999a) A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity. J Elast 56(1):59–93

    Article  MATH  MathSciNet  Google Scholar 

  122. Xiao H, Bruhns OT, Meyers A (1999) Existence and uniqueness of the integrable-exactly hypoelastic equation \(\mathop {\varvec {\tau }}\limits ^{\circ } \ast =\lambda \left({tr\varvec {D}}\right)\varvec {I}+2\mu \varvec {D}\) and its significance to finite inelasticity. Acta Mech 56(1):31–50

    Article  MathSciNet  Google Scholar 

  123. Xiao H, Bruhns OT, Meyers A (2001) Large strain responses of elastic-perfect plasticity and kinematic hardening plasticity with the logarithmic rate: Swift effect in torsion. Int J Plast 17(2):211–235

    Article  MATH  Google Scholar 

  124. Xiao H, Bruhns OT, Meyers A (2005) Objective stress rates, path-dependence properties and non-integrability problems. Acta Mech 176(3–4):135–151

    Article  MATH  Google Scholar 

  125. Xiao H, Bruhns OT, Meyers A (2006a) Elastoplasticity beyond small deformations. Acta Mech 182(1–2):31–111

    Article  MATH  Google Scholar 

  126. Xiao H, Bruhns OT, Meyers A (2006b) Objective stress rates, cyclic deformation paths, and residual stress accumulation. J Appl Math Mech (Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM)) 86(11):843–855

  127. Yang W, Cheng L, Hwang KC (1992) Objective corotational rates and shear oscillation. Int J Plast 8(6):643–656

  128. Yong S, Zhi-Da C (1989) On the objective stress rate in co-moving coordinate system. Appl Math Mech (English Edition) 10(2):103–112

  129. Zaremba S (1903) Sur une forme perfectionnée de la théorie de la relaxation. Bulletin International de L’Académie des Sciences de Cracovie. Polish Academy of Arts and Sciences, pp 594–614

  130. Zaremba S (1937) Sur une conception nouvelle des forces intérieures dans un fluide en mouvement. Mémorial des Sciences Mathématiques, L’Académie des Sciences de Paris 82:1–85

    Google Scholar 

  131. Zhang XQ (2009) Objective stress rates and residual strains in stress cycles. Multidiscip Model Mater Struct 5(1):77–98

  132. Zhong-Heng G (1983) Recent investigations on strain and stress rates in nonlinear continuum mechanics. Appl Math Mech (English Edition) 4(5):639–648

  133. Zhou X, Tamma KK (2003) On the applicability and stress update formulations for corotational stress rate hypoelasticity constitutive models. Finite Elem Anal Des 39(8):783–816

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Thanks go to Lombardia Region, TenarisDalmine and University of Bergamo for granting financial support to this research, through 2-year DRA (“Dote Ricerca Applicata”) research contract (“Assegno di Ricerca”), Project ID 12119. Also, the financial support by “Fondi di Ricerca d’Ateneo ex 60 %” at the University of Bergamo, Department of Engineering, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egidio Rizzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambirasio, L., Chiantoni, G. & Rizzi, E. On the Consequences of the Adoption of the Zaremba–Jaumann Objective Stress Rate in FEM Codes. Arch Computat Methods Eng 23, 39–67 (2016). https://doi.org/10.1007/s11831-014-9130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9130-z

Keywords

Navigation