Skip to main content
Log in

On the geometrical material structure of anelasticity

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

G-structures are the geometric backbone of the theory of material uniformity in continuum mechanics. Within this geometric framework, anelasticity is seen as a result of evolving distributions of inhomogeneity reflected as material nonintegrability. Constitutive principles governing thetime evolution of the G-structure underlying the finite-strain theory of anelasticity (e.g., plasticity) are proposed. The material Eshelby stress tensor is shown to be thedriving force behind this evolution. This should allow for a thermodynamically admissible formulation of anelasticity viewed as a G-structure evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Epstein, M., Maugin, G. A.: The energy-momentum tensor and material uniformity in finite elasticity. Acta Mech.83, 127–133 (1990).

    Google Scholar 

  2. Noll, W.: Materially uniform simple bodies with inhomogeneities. Arch. Rat. Mech. Anal.27, 1–32 (1967).

    Google Scholar 

  3. Wang, C.C.: On the geometric structure of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations. Arch. Rat. Mech. Anal.27, 33–94 (1967).

    Google Scholar 

  4. Bloom, F.: Modern differential geometric techniques in the theory of continuous distributions of dislocations. Lecture Notes in Mathematics, No. 733. Berlin Heidelberg New York: Springer 1979.

    Google Scholar 

  5. Cohen, H., Epstein, M.: Remarks on uniformity in hyperelastic materials. Int. J. Solids Struct.20, 233–243 (1984).

    Google Scholar 

  6. Elzanowski, M., Epstein, M., Sniatycki, J.:G-structures and material inhomogeneity. J. Elasticity23, 167–180 (1990).

    Google Scholar 

  7. Maugin, G.A.: Eshelby stress in elastoplasticity and ductile fracture. Int. J. Plasticity10, 393–408 (1994).

    Google Scholar 

  8. Epstein, M.: Eshelby-like tensors in thermoelasticity. In: Nonlinear thermomechanical processes in continua (Muschik, W., Maugin, G.A., eds.)61, pp. 147–159. Berlin: TUB-Dokumentation 1992.

    Google Scholar 

  9. Epstein, M., Maugin, G.A.: Thermoelastic material forces: definition and geometric aspects (submitted for publication, 1994).

  10. Lee, E.H.: Elastic plastic deformation at finite strain. A.S.M.E.Trans. J. Appl. Mech.36, 1–6 (1969).

    Google Scholar 

  11. Mandel, J.: Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Struct.9, 725–740 (1972).

    Google Scholar 

  12. Lubliner, J.: Plasticity theory. New York: McMillan 1990.

    Google Scholar 

  13. Cleja-Tigoiu, S., Soos, E.: Elastoviscoplastic models with relaxed configurations and internal state variables. Appl. Mech. Rev.43, 131–151 (1990).

    Google Scholar 

  14. Maugin, G.A.: The thermomechanics of plasticity and fracture. Cambridge: Cambridge University Press 1992.

    Google Scholar 

  15. Maugin, G.A., Trimarco, T.: Note on a mixed variational principle in finite elasticity. Rend. Mat. Accad. Lincei3, 69–74 (1992).

    Google Scholar 

  16. Maugin, G.A.: Material inhomogeneities in elasticity. London: Chapman and Hall 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, M., Maugin, G.A. On the geometrical material structure of anelasticity. Acta Mechanica 115, 119–131 (1996). https://doi.org/10.1007/BF01187433

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01187433

Keywords

Navigation