Skip to main content
Log in

Coagel Prepared from Aqueous Octyl β -d-Galactoside Solution

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Structuring of semi-crystalline networks in water systems is significant for a variety of industrial applications. In the present work, we investigated the coagel formation from aqueous octyl β -d-galactoside (C8-β-Gal) solutions and characterized the crystal structure and crystallite network in the prepared coagel. Differential scanning calorimetry (DSC) confirmed that the Krafft boundary temperature (T K) is 32–35 °C for C8-β-Gal concentrations below 30 wt% and a knee of the Krafft boundary exists around 2.5 wt% C8-β-Gal concentrations. The addition of NaCl increased T K slightly because of the salting-out effect. Powder X-ray diffraction (PXRD) analysis, field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) observations revealed that the coagel is comprised of the three dimensional bundled semi-crystalline network consisting of a “ribbon crystal phase” of hemihydrate crystals. Moreover, the excellent ability of C8-β-Gal to form a macroscopically homogeneous coagel was demonstrated by the comparison with other representative mono-alkylated glycoside’ systems containing octyl a -d-glucoside or dodecyl β -d-glucoside. Persistence of the liquid phase without liquid–liquid phase separation prior to and during the coagel formation was a key factor for the preparation. A novel coagel was obtained from a principal synthetic galactoside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

DSC:

Differential scanning calorimetry

T K :

Krafft boundary temperature

Z:

Number of formula units in the unit cell

C8-β-Gal:

Octyl β -d-galactoside

PXRD:

Powder X-ray diffraction

FE-SEM:

Field-emission scanning electron microscopy

References

  1. Luzzati V, Husson F. The structure of the liquid-crystalline phases of lipid-water systems. J Cell Biol. 1962;12:207–219. doi:10.1083/jcb.12.2.207.

    Article  CAS  Google Scholar 

  2. Laughlin RG. The aqueous phase behavior of surfactants, chapter 5. London: Academic; 1994. p. 102–154.

    Google Scholar 

  3. Sperline RP. Infrared spectroscopic study of the crystalline phases of sodium dodecyl sulfate. Langmuir. 1997;13:3715–3726. doi:10.1021/la9702087.

    Article  CAS  Google Scholar 

  4. Cassin G, de Costa C, van Duynhoven JPM, Agterof WGM. Investigation of the gel to coagel phase transition in monoglyceride-water systems. Langmuir. 1998;14:5757–5763. doi:10.1021/la980340m.

    Article  CAS  Google Scholar 

  5. Palma S, Manzo R, Lo Nostro P, Allemandi D. Nanostructures from alky vitamin C derivatives (ASCn): properties and potential platform for drug delivery. Int J Pharm. 2007;345:26–34. doi:10.1016/j.ijpharm.2007.09.014.

    Article  CAS  Google Scholar 

  6. Batte HD, Wright AJ, Rush JW, Idziak SHJ, Marangoni AG. Phase behavior, stability, and mesomorphism of monostearin–oil–water gels. Food Biophys. 2007;2:29–37. doi:10.1007/s11483-007-9026-7.

    Article  Google Scholar 

  7. Thareja P. Rheology and microstructure of pastes with crystal network. Rheol Acta. 2013;52:515–527. doi:10.1007/s00397-013-0716-4.

    Article  CAS  Google Scholar 

  8. Thareja P, Golematis A, Street CB, Wagner NJ, Vethamuthu MS, Hermanson KD, Ananthapadmanabhan KP. Influence of surfactants on the rheology and stability of crystallizing fatty acid pastes. J Am Oil Chem Soc. 2013;90:273–283. doi:10.1007/s11746-012-2161-4.

    Article  CAS  Google Scholar 

  9. Marangoni AG, Idziak SHJ, Vega C, Batte H, Ollivon M, Jantzi PS, Rush JWE. Encapsulation-structuring of edible oil attenuates acute elevation of blood lipids and insulin in humans. Soft Matter. 2007;3:183–187. doi:10.1039/b611985a.

    Article  CAS  Google Scholar 

  10. Alberola C, Blümich B, Emeis D, Wittern K-P. Phase transitions of monoglyceride emulsifier systems and pearlescent effects in cosmetic creams studied by 13C NMR spectroscopy and DSC. Colloids Surf A Physicochem Eng Asp. 2006;290:247–255. doi:10.1016/j.colsurfa.2006.05.030.

    Article  CAS  Google Scholar 

  11. Saino V, Monti D, Burgalassi S, Tampucci S, Palma S, Allemandi D, Chetoni P. Optimization of skin permeation and distribution of ibuprofen by using nanostructures (coagels) based on alkyl vitamin C derivatives. Eur J Pharm Biopharm. 2010;76:443–449. doi:10.1016/j.ejpb.2010.08.004.

    Article  CAS  Google Scholar 

  12. Palma S, Manzo RH, Allemandi D, Fratoni L, Lo Nostro P. Coagels from ascorbic acid derivatives. Langmuir. 2002;18:9219–9224. doi:10.1021/la026042d.

    Article  CAS  Google Scholar 

  13. Jung JH, John G, Masuda M, Yoshida K, Shinkai S, Shimizu T. Self-assembly of a sugar-based gelator in water: its remarkable diversity in gelation ability and aggregate structure. Langmuir. 2001;17:7229–7232. doi:10.1021/la0109516.

    Article  CAS  Google Scholar 

  14. Jung JH, Rim JA, Han WS, Lee SJ, Lee YJ, Cho EJ, Kim JS, Ji Q, Shimizu T. Hydrogel behavior of a sugar-based gelator by introduction of an unsaturated moiety as a hydrophobic group. Org Biomol Chem. 2006;4:2033–2038. doi:10.1039/B602279K.

    Article  CAS  Google Scholar 

  15. Matsumura S, Imai K, Yoshikawa S, Kawada K, Uchibori T. Surface activities, biodegradability and antimicrobial properties of n-alkyl glucosides, mannosides and galactosides. J Am Oil Chem Soc. 1996;67:996–1001. doi:10.1007/BF02541865.

    Article  Google Scholar 

  16. von Rybinski W, Hill K. Alkyl polyglycosides–properties and applications of a new class of surfactants. Angew Chem Int Ed. 1998;37:1328–1345. doi:10.1002/(SICI)1521-3773(19980605)37:10<1328.

    Article  Google Scholar 

  17. Schöberl P, Scholz N. Ecology. In: Balzer D, Lüders H, editors. Nonionic surfactants: alkyl polyglucosides. Surfactant science series, vol. 91, Chapter 7. New York: Marcel Dekker; 2000. p. 331–363.

  18. Kocher K, Wiegand H-J. Toxicology and dermatology. In: Balzer D, Lüders H, editors. Nonionic surfactants: alkyl polyglucosides. Surfactant science series, vol 91, Chapter 8. New York: Marcel Dekker; 2000. p. 365–383.

  19. Bae J, Choi EH, Pan J-G. Efficient synthesis of octyl-β -d-galactopyranoside by Bacillus spore-displayed β-galactosidase using an amphiphilic 1,2-dimethoxyethane co-solvent. Enzyme Microb Technol. 2011;48:232–238. doi:10.1016/j.enzmictec.2010.11.002.

    Article  CAS  Google Scholar 

  20. Sakya P, Seddon JM. Thermotropic and lyotropic phase behaviour of monoalkyl glycosides. Liq Cryst. 1997;23:409–424. doi:10.1080/026782997208334.

    Article  CAS  Google Scholar 

  21. Misran O, Timimi BA, Heidelberg T, Sugimura A, Hashim R. Deuterium NMR investigation of the lyotropic phases of alkyl β-glycoside/D2O systems. J Phys Chem B. 2013;117:7335–7344. doi:10.1021/jp401787b.

    Article  CAS  Google Scholar 

  22. Ogawa S, Asakura K, Osanai S. Freezing and melting behavior of an octyl β -d-glucoside–water binary system—inhibitory effect of octyl β -d-glucoside on ice crystal formation. Phys Chem Chem Phys. 2012;14:16312–16320. doi:10.1039/c2cp41439b.

    Article  CAS  Google Scholar 

  23. Abe Y, Harata K. Crystal structures of glycolipids. In: Dumitriu S, editor. Polysaccharides: structural diversity and functional versatility, 2nd edn, Chapter 32. New York: CRC; 2004. p. 743–772.

  24. Ahmadi S, Manicham Achari V, Nguan H, Hashim R. Atomistic simulation studies of the α/β-glucoside and galactoside in anhydrous bilayers: effect of the anomeric and epimeric configurations. J Mol Model. 2014;20:2165. doi:10.1007/s00894-014-2165-0.

    Article  Google Scholar 

  25. Ogawa S, Ozaki Y, Takahashi I. Structural insights into solid-to-solid phase transition and modulated crystal formation in octyl-β -d-galactoside crystals. ChemPhysChem. 2016;17:2808–2812. doi:10.1002/cphc.201600400.

    Article  CAS  Google Scholar 

  26. Ericsson CA, Ericsson LC, Kocherbitov V, Söderman O, Ulvenlund S. Thermotropic phase behavior of long-chain alkylmaltosides. Phys Chem Chem Phys. 2005;7:2970–2977. doi:10.1039/B502922H.

    Article  CAS  Google Scholar 

  27. Kocherbitov V, Söderman O. Phase diagram and physicochemical properties of the n-octyl a -d-glucoside/water system. Phys Chem Chem Phys. 2003;5:5262–5270. doi:10.1039/B306350J.

    Article  CAS  Google Scholar 

  28. Boyd BJ, Drummond CJ, Krodkiewska I, Grieser F. How chain length, headgroup polymerization, and anomeric configuration govern the thermotropic and lyotropic liquid crystalline phase behavior and the air-water interfacial adsorption of glucose-based surfactants. Langmuir. 2000;16:7359–7367. doi:10.1021/la991573w.

    Article  CAS  Google Scholar 

  29. Nilsson F, Söderman O, Hansson P. Physical-chemical properties of C9G1 and C10G1 β-alkylglucosides. Phase diagrams and aggregate size/structure. Langmuir. 1998;14:4050–4058. doi:10.1021/la980261a.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities (S1201027) 2012–2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigesaburo Ogawa.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, S., Koga, M., Asakura, K. et al. Coagel Prepared from Aqueous Octyl β -d-Galactoside Solution. J Surfact Deterg 20, 255–261 (2017). https://doi.org/10.1007/s11743-016-1894-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1894-8

Keywords

Navigation