Skip to main content
Log in

Rheology and microstructure of pastes with crystal network

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

This article reviews scientific studies which have been focused on the structure–property relationships of pastes with crystal network by considering fat crystal network as the key example. The review illustrates how rheology can be a valuable tool to characterize the mechanical behavior in these pastes and also provide information about the underlying microstructure in conjunction with various complimentary techniques. Rheological tests which can be adopted to determine the yielding behavior of the crystal network containing pastes are also presented. We have used these methods and concepts to characterize fatty acid crystal network to study a system emulating a skin cream formulation. It is hoped that the rheological fundamentals and the microstructural characterization techniques discussed in context of fat crystal network can be translated to other experimental systems where crystal-forming components are added to impart pasty material characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abend S, Lagaly G (2000) Sol–gel transitions of sodium montmorillonite dispersions. Appl Clay Sci 16(3–4):201–227

    Article  CAS  Google Scholar 

  • Acevedo NC, Block JM, Marangoni AG (2012a) Critical laminar shear-temperature effects on the nano- and mesoscale structure of a model fat and its relationship to oil binding and rheological properties. Faraday Discuss 58:171–94

    Article  CAS  Google Scholar 

  • Acevedo NC, Marangoni AG (2010a) Characterization of the nanoscale in triacylglycerol crystal networks. Cryst Growth Des 10(8):3327–3333. doi:10.1021/cg100468e

    Article  CAS  Google Scholar 

  • Acevedo NC, Marangoni AG (2010b) Toward nanoscale engineering of triacylglycerol crystal networks. Cryst Growth Des 10(8):3334–3339. doi:10.1021/cg100469x

    Article  CAS  Google Scholar 

  • Acevedo NC, Peyronel F, Marangoni AG (2012b) Nanoscale structure intercrystalline interactions in fat crystal networks. Curr Opin Colloid Interface Sci 16(5):374–383

    Article  CAS  Google Scholar 

  • Alvarez-Mitre FM, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso MA, Toro-Vazquez JF (2012) Shearing as a variable to engineer the rheology of candelilla wax organogels. Food Res Int 49(1):580–587

    Article  CAS  Google Scholar 

  • Awad TS, Rogers MA, Marangoni AG (2004) Scaling behavior of the elastic modulus in colloidal networks of fat crystals. J Phys Chem B 108(1):171–179. doi:10.1021/jp036285u

    Article  CAS  Google Scholar 

  • Balberg I, Anderson CH, Alexander S, Wagner N (1984a) Excluded volume and its relation to the onset of percolation. Phys Rev B 30(7):3933–3943

    Article  Google Scholar 

  • Balberg I, Binenbaum N, Wagner N (1984b) Percolation thresholds in the 3-dimensional Sticks system. Phys Rev Lett 52(17):1465–1468

    Article  Google Scholar 

  • Barnes HA (1999) The yield stress—a review or ‘pi alpha nu tau alpha rho epsilon iota’—everything flows. J Non-Newtonian Fluid Mech 81(1–2):133–178

    Article  CAS  Google Scholar 

  • Bertola V, Bertrand F, Tabuteau H, Bonn D, Coussot P (2003) Wall slip and yielding in pasty materials. J Rheol 47(5):1211–1226. doi:10.1122/1.1595098

    Article  CAS  Google Scholar 

  • Blonk JCG, Aalst Van H (1993) Confocal scanning laser microscopy in food research. Food Res Int 26(4):297–311

    Article  Google Scholar 

  • Bond AD (2004) On the crystal structures and melting point alternation of the n-alkyl carboxylic acids. New J Chem 28(1):104–114. doi:10.1039/b307208h

    Article  CAS  Google Scholar 

  • Boodhoo MV, Humphrey KL, Narine SS (2009) Relative hardness of fat crystal networks using force displacement curves. Int J Food Prop 12(1):129–144. doi:10.1080/10942910802223396

    Article  CAS  Google Scholar 

  • Bouzidi L, Boodhoo M, Humphrey KL, Narine SS (2005) Use of first and second derivatives to accurately determine key parameters of DSC thermographs in lipid crystallization studies. Thermochimica Acta 439(1–2):94–102. doi:10.1016/j.tca.2005.09.013

    Article  CAS  Google Scholar 

  • Bremer LGB, van Vliet T, Walstra P (1989) Theoretical and experimental study of the fractal nature of the structure of casein gels. J Chem Soc Faraday Trans 1: Phys Chem Condens Phases 85(10):3359–3372

    CAS  Google Scholar 

  • Buscall R, Mills PDA, Goodwin JW, Lawson DW (1988) Scaling behaviour of the rheology of aggregate networks formed from colloidal particles. J Chem Soc Faraday Trans 1: Phys Chem Condens Phases 84(12):4249–4260

    CAS  Google Scholar 

  • Callaghan IC, Ottewill RH (1974) Interparticle forces in montmorillonite gels. Faraday Discuss Chem Soc 57:110–118

    Article  CAS  Google Scholar 

  • Campos R, Narine SS, Marangoni AG (2002) Effect of cooling rate on the structure and mechanical properties of milk fat and lard. Food Res Int 35(10):971–981

    Article  CAS  Google Scholar 

  • Cassin G, de Costa C, van Duynhoven JPM, Agterof WGM (1998) Investigation of the gel to coagel phase transition in monoglyceride-water systems. Langmuir 14(20):5757–5763

    Article  CAS  Google Scholar 

  • Cebula DJ, Smith KW (1991) Differential scanning calorimetry of confectionery fats. Pure triglycerides—effects of cooling and heating rate variation. J Amer Oil Chem Soc 68(8):591–595

    Article  CAS  Google Scholar 

  • Chen DTN, Chen K, Hough LA, Islam MF, Yodh AG (2010) Rheology of carbon nanotube networks during gelation. Macromolecules 43(4):2048–2053

    Article  CAS  Google Scholar 

  • Coussot P (2005) Rheometry of pastes, suspensions and granular materials: applications in industry and environment. Wiley, Hoboken NJ

    Book  Google Scholar 

  • Coussot P (2007) Rheophysics of pastes: a review of microscopic modelling approaches. Soft Matter 3(5):528–540. doi:10.1039/b611021p

    Article  CAS  Google Scholar 

  • Coussot P, Tabuteau H, Chateau X, Tocquer L, Ovarlez G (2006) Aging and solid or liquid behavior in pastes. J Rheol 50(6):975–994

    Article  CAS  Google Scholar 

  • De Graef V, Depypere Fdr, Minnaert M, Dewettinck K (2011) Chocolate yield stress as measured by oscillatory rheology. Food Res Int 44(9):2660–2665

    Article  Google Scholar 

  • De Graef V, Dewettinck K, Verbeken D, Foubert I (2006) Rheological behavior of crystallizing palm oil. Eur J Lipid Sci Technol 108(10):864–870. doi:10.1002/ejlt.200600102

    Article  CAS  Google Scholar 

  • De Graef V, Goderis B, Van Puyvelde P, Foubert I, Dewettinck K (2008) Development of a rheological method to characterize palm oil crystallizing under shear. Eur J Lipid Sci Technol 110(6):521–529. doi:10.1002/ejlt.200700315

    Article  CAS  Google Scholar 

  • de Graef V, van Puyvelde P, Goderis B, Dewettinck K (2009) Influence of shear flow on polymorphic behavior and microstructural development during palm oil crystallization. Eur J Lipid Sci Technol 111(3):290–302. doi:10.1002/ejlt.200800181

    Article  CAS  Google Scholar 

  • Denn M, Bonn D (2011) Issues in the flow of yield-stress liquids. Rheologica Acta 50(4):307–315. doi:10.1007/s00397-010-0504-3

    Article  CAS  Google Scholar 

  • Divoux T, Barentin C, Manneville S (2011) Stress overshoot in a simple yield stress fluid: an extensive study combining rheology and velocimetry. Soft Matter 7(19):9335–9349

    Article  CAS  Google Scholar 

  • Dullaert K, Mewis J (2005) Thixotropy: build-up and breakdown curves during flow. J Rheol 49(6):1213–1230. doi:10.1122/1.2039868

    Article  CAS  Google Scholar 

  • Foubert I, Fredrick E, Vereecken J, Sichien M, Dewettinck K (2008) Stop-and-return DSC method to study fat crystallization. Thermochimica Acta 471(1–2):7–13. doi:10.1016/j.tca.2008.02.005

    Article  CAS  Google Scholar 

  • Gliguem H, Lopez C, Michon C, Lesieur P, Ollivon M (2011) The viscoelastic properties of processed cheeses depend on their thermal history and fat polymorphism. J Agric Food Chem 59(7):3125–3134. doi:10.1021/jf103641f

    Article  CAS  Google Scholar 

  • Heertje I (1976) Electron-microscopy in food research. Ultramicroscopy 2(1):127–127

    Google Scholar 

  • Heertje I (1993) Microstructural studies in fat research. Food Struct 12(1):77–94

    CAS  Google Scholar 

  • Heertje I, Leunis M (1997) Measurement of shape and size of fat crystals by electron microscopy. Food Sci Technol 30(2):141–146

    CAS  Google Scholar 

  • Heertje I, Vaneendenburg J, Cornelissen JM, Juriaanse AC (1988) The Effect of processing on some microstructural characteristics of fat spreads. Food Microstruct 7(2):189–193

    Google Scholar 

  • Higami M, Ueno S, Segawa T, Iwanami K, Sato K (2003) Simultaneous synchrotron radiation X-ray diffraction—DSC analysis of melting and crystallization behavior of trilauroylglycerol in nanoparticles of oil-in-water emulsion. J Amer Oil Chem Soc 80(8):731–739

    Article  CAS  Google Scholar 

  • Humphrey KL, Narine SS (2007) Diminishing marginal utility of cooling rate increase on the crystallization behavior and physical properties of a lipid sample. J Amer Oil Chem Soc 84(8):709–716. doi:10.1007/s11746-007-1092-y

    Article  CAS  Google Scholar 

  • Juriaanse AC, Heertje I (1988) Microstructure of shortenings, margarine and butter—a review. Food Microstruct 7(2):181–188

    Google Scholar 

  • Kaufmann N, De Graef V, Dewettinck K, Wiking L (2012) Shear-induced crystal structure formation in milk fat and blends with rapeseed oil. Food Biophys 7:1–9. doi:10.1007/s11483-012-9269-9

    Article  Google Scholar 

  • Kawamura K (1979) Dsc Thermal-analysis of crystallization behavior in palm oil. J Amer Oil Chem Soc 56(8):753–758

    Article  CAS  Google Scholar 

  • Kawamura K (1980) DSC Thermal-analysis of crystallization behavior in palm oil. 2. J Amer Oil Chem Soc 57(1):48–51

    Article  CAS  Google Scholar 

  • Kawamura K (1983) The DSC thermal-analysis of palm oil crystallization. J Agric Chem Soc Jpn 57(5):475–485

    CAS  Google Scholar 

  • Laurati M, Egelhaaf SU, Petekidis G (2011) Nonlinear rheology of colloidal gels with intermediate volume fraction. J Rheol 55(3):673–706

    Article  CAS  Google Scholar 

  • Lin YC, Koenderink GH, MacKintosh FC, Weitz DA (2007) Viscoelastic properties of microtubule networks. Macromolecules 40(21):7714–7720. doi:10.1021/ma0708621

    Article  CAS  Google Scholar 

  • Litwinenko JW, Rojas AM, Gerschenson LN, Marangoni AG (2002) Relationship between crystallization behavior, microstructure, and mechanical properties in a palm oil-based shortening. J Amer Oil Chem Soc 79(7):647–654

    Article  CAS  Google Scholar 

  • Lupi F, Gabriele D, de Cindio B (2011) Effect of Shear rate on crystallisation phenomena in olive oil-based organogels. Food and Bioprocess Technol 5:1–9. doi:10.1007/s11947-011-0619-2

    Google Scholar 

  • MacMillan SD, Roberts KJ, Rossi A, Wells MA, Polgreen MC, Smith IH (2002) In situ small angle X-ray scattering (SAXS) studies of polymorphism with the associated crystallization of cocoa butter fat using shearing conditions. Cryst Growth Des 2(3):221–226. doi:10.1021/cg0155649

    Article  CAS  Google Scholar 

  • Maleky F, Acevedo NC, Marangoni AG (2012) Cooling rate and dilution affect the nanostructure and microstructure differently in model fats. Eur J Lipid Sci Technol 114(7):748–759. doi:10.1002/ejlt.201100314

    Article  CAS  Google Scholar 

  • Maleky F, Marangoni AG (2008) Process development for continuous crystallization of fat under laminar shear. J Food Eng 89(4):399–407. doi:10.1016/j.jfoodeng.2008.05.019

    Article  Google Scholar 

  • Maleky F, Smith AK, Marangoni A (2011) Laminar shear effects on crystalline alignments and nanostructure of a triacylglycerol crystal network. Cryst Growth Des. doi:10.1021/cg200014w

  • Mandelbrot BB (1982) The fractal geometry of nature. Henry Holt and Company, New York

    Google Scholar 

  • Marangoni A (2005) Fat crystal networks. Marcel Dekker, New York

    Google Scholar 

  • Marangoni AG, Hartel RW (1998) Visualization and structural analysis of fat crystal networks. Food Technol 52(9):46–51

    Google Scholar 

  • Marangoni AG, McGauley SE (2003) Relationship between crystallization behavior and structure in cocoa butter. Cryst Growth Des 3(1):95–108. doi:10.1021/cg025580l

    Article  CAS  Google Scholar 

  • Marangoni AG, Narine SS (2002) Identifying key structural indicators of mechanical strength in networks of fat crystals. Food Res Int 35(10):957–969

    Article  CAS  Google Scholar 

  • Marangoni AG, Rogers MA (2003) Structural basis for the yield stress in plastic disperse systems. Appl Phys Lett 82(19):3239–3241. doi:10.1063/1.1576502

    Article  CAS  Google Scholar 

  • Marangoni AG, Tang DM (2008) Modeling the rheological properties of fats: a perspective and recent advances. In. pp 113–119. doi:10.1007/s11483-007-9049-0

  • Margomenouleonidopoulou G (1994) Thermotropic mesophases of ionic amphiphiles. 2. Ionic amphiphiles in aqueous-media. J Therm Anal 42(5):1041–1061

    Article  CAS  Google Scholar 

  • Mazzanti G, Guthrie SE, Marangoni AG, Idziak SHJ (2007) A conceptual model for shear-induced phase behavior in crystallizing cocoa butter. Cryst Growth Des 7(7):1230–1241. doi:10.1021/cg050457r

    Article  CAS  Google Scholar 

  • Mazzanti G, Guthrie SE, Sirota EB, Marangoni AG, Idziak SHJ (2003) Orientation and phase transitions of fat crystals under shear. Cryst Growth Des 3(5):721–725. doi:10.1021/cg034048a

    Article  CAS  Google Scholar 

  • Mazzanti G, Guthrie SE, Sirota EB, Marangoni AG, Idziak SHJ (2004) Novel shear-induced phases in cocoa butter. Cryst Growth Des 4(3):409–411. doi:10.1021/cg034260e

    Article  CAS  Google Scholar 

  • Mazzanti G, Marangoni AG, Idziak SHJ (2005) Modeling phase transitions during the crystallization of a multicomponent fat under shear. Phys Rev E 71(4):041607-1–041607-12. doi:10.1103/PhysRevE.71.041607

    Article  CAS  Google Scholar 

  • Mazzanti G, Mudge EM, Anom EY (2008) In situ Rheo-NMR measurements of solid fat content. J Amer Oil Chem Soc 85(5):405–412. doi:10.1007/s11746-008-1227-9

    Article  CAS  Google Scholar 

  • Meakin P (1987) Fractal aggregates. Adv Colloid Interf Sci 28:249–331

    Article  Google Scholar 

  • Mewis J (1979) Thixotropy—general review. J Non-Newtonian Fluid Mech 6(1):1–20

    Article  CAS  Google Scholar 

  • Mewis J, Wagner NJ (2009) Thixotropy. Adv Colloid Interf Sci 147–48:214–227. doi:10.1016/j.cis.2008.09.005

    Article  CAS  Google Scholar 

  • Miskandar MS, Man YBC, Rahman RA, Aini IN, Yusoff MSA (2004) Palm oil crystallization: effects of cooling time and oil content. J Food Lipids 11(3):190–207

    Article  CAS  Google Scholar 

  • Mohraz A, Solomon MJ (2006) Gelation and internal dynamics of colloidal rod aggregates. J Colloid Interface Sci 300(1):155–162. doi:10.1016/j.jcis.2006.03.048

    Article  CAS  Google Scholar 

  • Moller P, Fall A, Chikkadi V, Derks D, Bonn D (2009) An attempt to categorize yield stress fluid behaviour. Philos Trans R Soc A Math Phys Eng Sci 367(1909):5139–5155. doi:10.1098/rsta.2009.0194

    Article  Google Scholar 

  • Moller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2(4):274–283. doi:10.1039/b517840a

    Article  CAS  Google Scholar 

  • Narine SS, Humphrey KL (2004a) A comparison of lipid shortening functionality as a function of molecular ensemble and shear: microstructure, polymorphism, solid fat content and texture. Food Res Int 37(1):28–38. doi:10.1016/j.foodres.2003.09.013

    Article  CAS  Google Scholar 

  • Narine SS, Humphrey KL (2004b) Extending the capability of pulsed NMR instruments to measure solid fat content as a function of both time and temperature. J Amer Oil Chem Soc 81(1):101–102

    Article  CAS  Google Scholar 

  • Narine SS, Marangoni AG (1999a) Fractal nature of fat crystal networks. Phys Rev E 59(2):1908–1920

    Article  CAS  Google Scholar 

  • Narine SS, Marangoni AG (1999b) Mechanical and structural model of fractal networks of fat crystals at low deformations. Phys Rev E 60(6):6991–7000

    Article  CAS  Google Scholar 

  • Narine SS, Marangoni AG (1999c) Microscopic and rheological studies of fat crystal networks. J Cryst Growth 198–199:1315–1319

    Article  Google Scholar 

  • Narine SS, Marangoni AG (1999d) Microscopic and rheological studies of fat crystal networks. J Cryst Growth 198:1315–1319

    Article  Google Scholar 

  • Narine SS, Marangoni AG (1999e) Relating structure of fat crystal networks to mechanical properties: a review. Food Res Int 32(4):227–248

    Article  CAS  Google Scholar 

  • Narine SS, Marangoni AG (2001) Elastic modulus as an indicator of macroscopic hardness of fat crystal networks. Lebensm Wisss Technol Food Sci Technol 34(1):33–40

    Article  CAS  Google Scholar 

  • Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Poon WCK, Pusey PN (2008) Yielding behavior of repulsion- and attraction-dominated colloidal glasses. J Rheol 52(2):649–676

    Article  CAS  Google Scholar 

  • Philipse AP, Wierenga AM (1998) On the density and structure formation in gels and clusters of colloidal rods and fibers. Langmuir 14(1):49–54

    Article  CAS  Google Scholar 

  • Piper SH, Malkin T, Austin HE (1926) An X-ray study of some structural modifications of long-chain compounds. J Chem Soc 1:2310–2318

    Article  Google Scholar 

  • Rønholt S, Kirkensgaard JJK, Pedersen TBk, Mortensen K, Knudsen JC (2012) Polymorphism, microstructure and rheology of butter. Effects of cream heat treatment. Food Chem 135(3):1730–1739

    Article  CAS  Google Scholar 

  • Rye GG, Marangoni AG (2003) Cooling rate effects on solid fat content determination. J Amer Oil Chem Soc 80(8):835–836

    Article  CAS  Google Scholar 

  • Sato K, Ueno S (2011) Crystallization, transformation and microstructures of polymorphic fats in colloidal dispersion states. Curr Opin Colloid Interface Sci 16(5):384–390

    Article  CAS  Google Scholar 

  • Sein A, Verheij JA, Agterof WGM (2002) Rheological characterization, crystallization, and gelation behavior of monoglyceride gels. J Colloid Interface Sci 249(2): 412–422. doi:10.1006/jcis.2002.8287

    Article  CAS  Google Scholar 

  • Shih W-H, Shih WY, Kim S-I, Liu J, Aksay IA (1990) Scaling behavior of the elastic properties of colloidal gels. Phys Rev A 42(8):4772–4779

    Article  CAS  Google Scholar 

  • Solomon MJ, Boger DV (1998) The rheology of aqueous dispersions of spindle-type colloidal hematite rods. J Rheol 42(4):929–949

    Article  CAS  Google Scholar 

  • Solomon MJ, Spicer PT (2010) Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6(7): 1391–1400. doi:10.1039/b918281k

    Article  CAS  Google Scholar 

  • Song C, Havlin S, Makse HA (2005) Self-similarity of complex networks. Nature 433(7024):392–395

    Article  CAS  Google Scholar 

  • Sonoda T, Takata Y, Ueno S, Sato K (2004) DSC and synchrotron-radiation X-ray diffraction studies on crystallization and polymorphic behavior of palm stearin in bulk and oil-in-water emulsion states. J Amer Oil Chem Soc 81(4):365–373

    Article  CAS  Google Scholar 

  • Stokes JR, Frith WJ (2008) Rheology of gelling and yielding soft matter systems. Soft Matter 4(6):1133–1140. doi:10.1039/b719677f

    Article  CAS  Google Scholar 

  • Stokes JR, Telford JH (2004) Measuring the yield behaviour of structured fluids. J Non-Newtonian Fluid Mech 124(1–3):137–146. doi:10.1016/j.jnnfm.2004.09.001

    Article  CAS  Google Scholar 

  • Tang DM, Marangoni AG (2006a) Microstructure and fractal analysis of fat crystal networks. J Amer Oil Chem Soc 83(5):377–388

    Article  CAS  Google Scholar 

  • Tang DM, Marangoni AG (2006b) Quantitative study on the microstructure of colloidal fat crystal networks and fractal dimensions. Adv Colloid Interface Sci 128:257–265. doi:10.1016/j.cis.2006.11.019

    Article  CAS  Google Scholar 

  • Tang DM, Marangoni AG (2007) Modeling the rheological properties and structure of colloidal fat crystal networks (vol 18, p 474, 2007). Trends Food Sci Technol 19(1):53–53. doi:10.1016/j.tifs.2007.08.004

    Article  CAS  Google Scholar 

  • Tang DM, Marangoni AG (2008) Modified fractal model and rheological properties of colloidal networks. J Colloid Interface Sci 318(2):202–209. doi:10.1016/j.jcis.2007.09.062

    Article  CAS  Google Scholar 

  • Tang SK, Liu XY, Strom CS (2009) Producing supramolecular functional materials based on fiber network reconstruction. Adv Funct Mater 19(14):2252–2259. doi:10.1002/adfm.200801590

    Article  CAS  Google Scholar 

  • Thareja P, Street CB, Wagner NJ, Vethamuthu MS, Hermanson KD, Ananthapadmanabhan KP (2011) Development of an in situ rheological method to characterize fatty acid crystallization in complex fluids. Colloids Surf A Physicochem Eng Asp 388(1–3):12–20

    Article  CAS  Google Scholar 

  • van Duynhoven JPM, Broekmann I, Sein A, van Kempen GMP, Goudappel GJW, Veeman WS (2005) Microstructural investigation of monoglyceride-water coagel systems by NMR and CryoSEM. J Colloid Interface Sci 285(2):703–710. doi:10.1016/j.jcis.2004.12.008

    Article  CAS  Google Scholar 

  • Vandentempel M (1979) Rheology of concentrated suspensions. J Colloid Interface Sci 71(1):18–20

    Article  CAS  Google Scholar 

  • Vdtempel M (1961) Mechanical properties of plastic-disperse systems at very small deformations. J Colloid Sci 16(3):284–296

    Article  Google Scholar 

  • Verma AR (1955) Interferometric and X-ray investigation of the growth of long-chain fatty acid crystals. 1. Polymorphism and polytypism in palmitic acid crystals. ProcR Soc Lond A Math Phys Sci 228(1172):34–50

    Article  Google Scholar 

  • Vreeker R, Hoekstra LL, den Boer DC, Agterof WGM (1992) The fractal nature of fat crystal networks. Colloids Surf 65(2–3):185–189

    Article  CAS  Google Scholar 

  • Wierenga A, Philipse AP, Lekkerkerker HNW, Boger DV (1998) Aqueous dispersions of colloidal boehmite: structure, dynamics, and yield stress of rod gels. Langmuir 14(1):55–65

    Article  CAS  Google Scholar 

  • Wilkins GMH, Spicer PT, Solomon MJ (2009) Colloidal system to explore structural and dynamical transitions in rod networks, gels, and glasses. Langmuir 25(16):8951–8959. doi:10.1021/la9004196

    Article  CAS  Google Scholar 

  • Wright AJ, Scanlon MG, Hartel RW, Marangoni AG (2001) Rheological properties of milkfat and butter. J Food Sci 66(8):1056–1071

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor Norman J. Wagner at the University of Delaware for his helpful comments and fruitful discussions. Dr Sharad Gupta at IIT Gandhinagar is acknowledged for critically proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prachi Thareja.

Additional information

Special issue devoted to novel trends in rheology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thareja, P. Rheology and microstructure of pastes with crystal network. Rheol Acta 52, 515–527 (2013). https://doi.org/10.1007/s00397-013-0716-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0716-4

Keywords

Navigation