Skip to main content
Log in

Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Several volatile organic compounds (VOCs) have been reported as having a communication role between plants and also between plants and animals. We aimed to test whether methanol, a short-chain oxygenated VOC, could also have a signalling role between plants. We monitored photosynthetic performance and VOC exchange rates of Quercus ilex L. saplings before and after two different treatments: (a) clipping of some leaves to simulate an attack by herbivores and (b) fumigation with gaseous methanol for 5 h to simulate the amount of methanol a plant could receive from surrounding plants if those had been already attacked by herbivores. The clipping treatment enhanced the photosynthetic rates, the chlorophyll a to b ratio and the carotenoid to chlorophyll ratio of non-clipped leaves, suggesting an activation of plant protective metabolism. Also, a small but interesting systemic (in non-clipped leaves) increase in methanol emission rates was observed, which agrees with the possibility that methanol may act as a signalling cue. The methanol fumigation treatment induced an increase in the actual photochemical efficiency of PSII and also in the carotenoid to chlorophyll ratio. Methanol fumigation also promoted a 14% increase in the monoterpene emission rate, 1 day after the treatment, a similar response to the ones induced by other signalling VOCs. The enhanced monoterpene emissions could add to the blend of VOCs emitted after stress and be part of further signalling pathways, thus forwarding the message started by methanol. This study suggests that clipping and methanol fumigation at natural concentrations elicit significant neighbour plant physiological responses and further BVOC emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arimura G, Tashiro K, Kuhara S, Nishioka T, Ozawa R, Takabayashi J (2000) Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochem Biophys Res Commun 277:305–310

    Article  PubMed  CAS  Google Scholar 

  • Arimura G, Garms S, Maffei M, Bossi S, Schulze B, Leitner M, Mithöfer A, Boland W (2008) Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling. Planta 227:453–464

    Article  PubMed  CAS  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101

    Article  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science 311:812–815

    Article  PubMed  CAS  Google Scholar 

  • Blanch JS, Peñuelas J, Llusià J (2007) Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex. Physiol Plant 131:211–225

    PubMed  CAS  Google Scholar 

  • Bricchi I, Leitner M, Foti M, Mithöfer A, Boland W, Maffei ME (2010) Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: early signaling and volatile emission in Lima bean (Phaseolus lunatus L.). Planta 232:719–729

    Article  PubMed  CAS  Google Scholar 

  • Brilli F, Ciccioli P, Frattoni M, Prestininzi M, Spanedda AF, Loreto F (2009) Constitutive and herbivore-induced monoterpenes emitted by Populus × euroamericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ 32:542–552

    Article  PubMed  CAS  Google Scholar 

  • de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the Earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev 26:223–257

    Article  PubMed  Google Scholar 

  • Dewez D, Dautremepuits C, Jeandet P, Vernet G, Popovic R (2003) Effects of methanol on photosynthetic processes and growth of Lemna gibba. Photochem Photobiol 78:420–424

    Article  PubMed  CAS  Google Scholar 

  • Downie A, Miyazaki S, Bohnert H, John P, Coleman J, Parry M, Haslam R (2004) Expression profiling of the response of Arabidopsis thaliana to methanol stimulation. Phytochemistry 65:2305–2316

    Article  PubMed  CAS  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    Article  PubMed  CAS  Google Scholar 

  • Fall R, Karl T, Hansel A, Jordan A, Lindinger W (1999) Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry. J Geophys Res 104:15963–15974

    Article  CAS  Google Scholar 

  • Farag MA, Pare PW (2002) C-6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554

    Article  PubMed  CAS  Google Scholar 

  • Faver KL, Gerik TJ (1996) Foliar-applied methanol effects on cotton (Gossypium hirsutum L.) gas exchange and growth. Field Crop Res 47:227–234

    Article  Google Scholar 

  • Filella I, Peñuelas J, Llusià J (2006) Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid. New Phytol 169:135–144

    Article  PubMed  CAS  Google Scholar 

  • Filella I, Peñuelas J, Seco R (2009) Short-chained oxygenated VOC emissions in Pinus halepensis in response to changes in water availability. Acta Physiol Plant 31:311–318

    Article  CAS  Google Scholar 

  • Frost CJ, Appel M, Carlson JE, De Moraes CM, Mescher MC, Schultz JC (2007) Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett 10:490–498

    Article  PubMed  Google Scholar 

  • Frost CJ, Mescher MC, Dervinis C, Davis JM, Carlson JE, De Moraes CM (2008) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol 180:722–733

    Article  PubMed  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Gershenzon J (2007) Plant volatiles carry both public and private messages. Proc Natl Acad Sci USA 104:5257–5258

    Article  PubMed  CAS  Google Scholar 

  • Godard K, White R, Bohlmann J (2008) Monoterpene-induced molecular responses in Arabidopsis thaliana. Phytochemistry 69:1838–1849

    Article  PubMed  CAS  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210

    Article  CAS  Google Scholar 

  • Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT (2008) Shared signals—‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 11:24–34

    PubMed  Google Scholar 

  • Harley P, Greenberg J, Niinemets U, Guenther A (2007) Environmental controls over methanol emission from leaves. Biogeosciences 4:1083–1099

    Article  CAS  Google Scholar 

  • Heil M, Kost C (2006) Priming of indirect defences. Ecol Lett 9:813–817

    Article  PubMed  Google Scholar 

  • Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472

    Article  PubMed  CAS  Google Scholar 

  • Holzinger R, Lee A, Paw KT, Goldstein AH (2005) Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. Atmos Chem Phys 5:67–75

    Article  CAS  Google Scholar 

  • Hüve K, Christ MM, Kleist E, Uerlings R, Niinemets U, Walter A, Wildt J (2007) Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. J Exp Bot 58:1783–1793

    Article  PubMed  Google Scholar 

  • Jacob DJ, Field BD, Li QB, Blake DR, de Gouw J, Warneke C, Hansel A, Wisthaler A, Singh HB, Guenther A (2005) Global budget of methanol: constraints from atmospheric observations. J Geophys Res 110:D08303

    Article  Google Scholar 

  • Karl T, Guenther A, Lindinger C, Jordan A, Fall R, Lindinger W (2001) Eddy covariance measurements of oxygenated volatile organic compound fluxes from crop harvesting using a redesigned proton-transfer-reaction mass spectrometer. J Geophys Res 106:24157–24167

    Article  CAS  Google Scholar 

  • Kavouras IG, Mihalopoulos N, Stephanou EG (1998) Formation of atmospheric particles from organic acids produced by forests. Nature 395:683–686

    Article  CAS  Google Scholar 

  • Keenan T, Niinemets U, Sabate S, Gracia C, Peñuelas J (2009) Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties. Atmos Chem Phys 9:4053–4076

    Article  CAS  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94:619–628

    Article  CAS  Google Scholar 

  • Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183:27–51

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Packer L, Douce R (eds) Plant Cell Membranes. Academic Press, London, pp 350–382

    Chapter  Google Scholar 

  • Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR–MS)—medical applications, food control and environmental research. Int J Mass Spectrom 173:191–241

    Article  CAS  Google Scholar 

  • Llusià J, Peñuelas J (2001) Emission of volatile organic compounds by apple trees under spider mite attack and attraction of predatory mites. Exp Appl Acarol 25:65–77

    Article  PubMed  Google Scholar 

  • Llusià J, Peñuelas J, Sardans J, Owen SM, Niinemets Ü (2010) Measurement of volatile terpene emissions in 70 dominant vascular plant species in Hawaii: aliens emit more than natives. Global Ecol Biogeogr 19:863–874

    Article  Google Scholar 

  • Loreto F, Tricoli D, Centritto M, Alvino A, Delfine S (1999) Short-term effects of fumigation with gaseous methanol on photosynthesis in horticultural plants. J Am Soc Hortic Sci 124:377–380

    CAS  Google Scholar 

  • Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24:361–367

    PubMed  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sundaram SP, Sa T (2006) A new insight into foliar applied methanol influencing phylloplane methylotrophic dynamics and growth promotion of cotton (Gossypium hirsutum L.) and sugarcane (Saccharum officinarum L.). Environ Exp Bot 57:168–176

    Article  CAS  Google Scholar 

  • Mantyla E, Alessio GA, Blande JD, Heijari J, Holopainen JK, Laaksonen T, Piirtola P, Klemola T (2008) From plants to birds: higher avian predation rates in trees responding to insect herbivory. Plos One 3:e2832

    Article  PubMed  Google Scholar 

  • Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280

    Article  PubMed  CAS  Google Scholar 

  • Mithöfer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168

    Article  PubMed  Google Scholar 

  • Mitra S, Baldwin IT (2008) Independently silencing two photosynthetic proteins in Nicotiana attenuata has different effects on herbivore resistance. Plant Physiol 148:1128–1138

    Article  PubMed  CAS  Google Scholar 

  • Mumm R, Posthumus MA, Dicke M (2008) Significance of terpenoids in induced indirect plant defence against herbivorous arthropods. Plant Cell Environ 31:575–585

    Article  PubMed  CAS  Google Scholar 

  • Park S, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    Article  PubMed  CAS  Google Scholar 

  • Peiffer M, Felton GW (2009) Do caterpillars secrete “Oral Secretions”? J Chem Ecol 35:326–335

    Article  PubMed  CAS  Google Scholar 

  • Peñuelas J, Filella I (1998) Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci 3:151–156

    Article  Google Scholar 

  • Peñuelas J, Llusià J (2002) Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol 155:227–237

    Article  Google Scholar 

  • Peñuelas J, Llusià J (2003) BVOCs: plant defense against climate warming? Trends Plant Sci 8:105–109

    Article  PubMed  Google Scholar 

  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144

    Article  PubMed  Google Scholar 

  • Peñuelas J, Baret F, Filella I (1995a) Semiempirical indexes to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica 31:221–230

    Google Scholar 

  • Peñuelas J, Llusià J, Estiarte M (1995b) Terpenoids—a plant language. Trends Ecol Evol 10:289

    Article  PubMed  Google Scholar 

  • Peñuelas J, Filella I, Stefanescu C, Llusià J (2005a) Caterpillars of Euphydryas aurinia (Lepidoptera: Nymphalidae) feeding on Succisa pratensis leaves induce large foliar emissions of methanol. New Phytol 167:851–857

    Article  PubMed  Google Scholar 

  • Peñuelas J, Llusià J, Asensio D, Munné-Bosch S (2005b) Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant Cell Environ 28:278–286

    Article  Google Scholar 

  • Peñuelas J, Llusià J, Filella I (2007) Methyl salicylate fumigation increases monoterpene emission rates. Biol Plant 51:372–376

    Article  Google Scholar 

  • Peñuelas J, Filella I, Seco R, Llusià J (2009) Increase in isoprene and monoterpene emissions after re-watering of droughted Quercus ilex seedlings. Biol Plant 53:351–354

    Article  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Visser EJW, De Kroon H, Voesenek LACJ (2003) Ethylene is required in tobacco to successfully compete with proximate neighbours. Plant Cell Environ 26:1229–1234

    Article  CAS  Google Scholar 

  • Pinto DM, Blande JD, Nykanen R, Dong W, Nerg A, Holopainen JK (2007a) Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J Chem Ecol 33:683–694

    Article  PubMed  CAS  Google Scholar 

  • Pinto DM, Nerg A, Holopainen JK (2007b) The role of ozone-reactive compounds, terpenes, and green leaf volatiles (GLVs), in the orientation of Cotesia plutellae. J Chem Ecol 33:2218–2228

    Article  PubMed  CAS  Google Scholar 

  • Raffa KF, Berryman AA, Simasko J, Teal W, Wong BL (1985) Effects of grand fir monoterpenes on the fir engraver, Scolytus ventralis (Coleoptera, Scolytidae), and its symbiotic fungus. Environ Entomol 14:552–556

    CAS  Google Scholar 

  • Rajala A, Karkkainen J, Peltonen J, Peltonen-Sainio P (1998) Foliar applications of alcohols failed to enhance growth and yield of C-3 crops. Ind Crop Prod 7:129–137

    Article  CAS  Google Scholar 

  • Ramirez I, Dorta F, Espinoza V, Jimenez E, Mercado A, Peña-Cortes H (2006) Effects of foliar and root applications of methanol on the growth of Arabidopsis, tobacco, and tomato plants. J Plant Growth Regul 25:30–44

    Article  CAS  Google Scholar 

  • Ruther J, Kleier S (2005) Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-Hexen-1-ol. J Chem Ecol 31:2217–2222

    Article  PubMed  CAS  Google Scholar 

  • Schaub A, Blande JD, Graus M, Oksanen E, Holopainen JK, Hansel A (2010) Real-time monitoring of herbivore induced volatile emissions in the field. Physiol Plant 138:123–133

    Article  PubMed  CAS  Google Scholar 

  • Schmidt L, Schurr U, Roese USR (2009) Local and systemic effects of two herbivores with different feeding mechanisms on primary metabolism of cotton leaves. Plant Cell Environ 32:893–903

    Article  PubMed  CAS  Google Scholar 

  • Seco R, Peñuelas J, Filella I (2007) Short-chain oxygenated VOCs: emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos Environ 41:2477–2499

    Article  CAS  Google Scholar 

  • Seco R, Peñuelas J, Filella I (2008) Formaldehyde emission and uptake by Mediterranean trees Quercus ilex and Pinus halepensis. Atmos Environ 42:7907–7914

    Article  CAS  Google Scholar 

  • Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374:769

    Article  CAS  Google Scholar 

  • Singsaas EL, Sharkey TD (1998) The regulation of isoprene emission responses to rapid leaf temperature fluctuations. Plant Cell Environ 21:1181–1188

    Article  CAS  Google Scholar 

  • Staudt M, Lhoutellier L (2007) Volatile organic compound emission from holm oak infested by gypsy moth larvae: evidence for distinct responses in damaged and undamaged leaves. Tree Physiol 27:1433–1440

    PubMed  CAS  Google Scholar 

  • Syvertsen JP (1994) Partial shoot removal increases net CO2 assimilation and alters water relations of citrus seedlings. Tree Physiol 14:497–508

    PubMed  Google Scholar 

  • Ton J, D’Alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch-Mani B, Turlings TCJ (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26

    Article  PubMed  CAS  Google Scholar 

  • Trumble JT, Kolodnyhirsch DM, Ting IP (1993) Plant compensation for arthropod herbivory. Annu Rev Entomol 38:93–119

    Article  Google Scholar 

  • Velikova V, Pinelli P, Pasqualini S, Reale L, Ferranti F, Loreto F (2005) Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone. New Phytol 166:419–426

    Article  PubMed  CAS  Google Scholar 

  • von Dahl CC, Baldwin IT (2007) Deciphering the role of ethylene in plant–herbivore interactions. J Plant Growth Regul 26:201–209

    Article  CAS  Google Scholar 

  • von Dahl CC, Havecker M, Schlogl R, Baldwin IT (2006) Caterpillar-elicited methanol emission: a new signal in plant–herbivore interactions? Plant J 46:948–960

    Article  Google Scholar 

  • Wright GA, Schiestl FP (2009) The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct Ecol 23:841–851

    Article  Google Scholar 

  • Young A, Britton G (1990) Carotenoids and stress. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley, New York, pp 87–112

    Google Scholar 

  • Zangerl AR, Hamilton JG, Miller TJ, Crofts AR, Oxborough K, Berenbaum MR, de Lucia EH (2002) Impact of folivory on photosynthesis is greater than the sum of its holes. Proc Natl Acad Sci USA 99:1088–1091

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Zhang RY (2004) Proton transfer reaction rate constants between hydronium ion (H3O(+)) and volatile organic compounds. Atmos Environ 38:2177–2185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish Government grants CGL2006-04025/BOS, CGL2010-17172, and Consolider-Ingenio Montes CSD2008-00040, the CSIC grant PIF08-006-3 and the Catalan Government grant SGR 2009-458. Roger Seco gratefully acknowledges a FPI fellowship (BES-2005-6989) from MEC (Spanish Government).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Seco.

Additional information

Communicated by J. Franklin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seco, R., Filella, I., Llusià, J. et al. Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex . Acta Physiol Plant 33, 2413–2422 (2011). https://doi.org/10.1007/s11738-011-0782-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0782-0

Keywords

Navigation