Skip to main content
Log in

Do Caterpillars Secrete “Oral Secretions”?

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The oral secretions or regurgitant of caterpillars contain potent elicitors of plant induced responses. These elicitors are recognized by host plants to differentiate between simple mechanical injury and the presence of herbivores. In some cases, this level of recognition is highly specific. Despite the in-depth chemical characterization of these elicitors, little is known about the amounts delivered in regurgitant during feeding. In this study, we use a fluorescent dye to label regurgitant in order to visualize caterpillar regurgitation during feeding. The procedure is highly sensitive and allows us to visualize nanoliter amounts of regurgitant. We examined the propensity of larval Helicoverpa zea, Heliothis virescens, Spodoptera exigua, Spodoptera frugiperda, and Manduca sexta to regurgitate on various host plants. These species were selected because they have been among the most intensely studied in terms of elicitors. Our results indicate that most larvae did not regurgitate following a brief feeding bout (∼10 min) during which they ate ca. 0.40 cm2 of leaf. When larvae did regurgitate, it was typically less than 10 nl. This is several orders of magnitude less than is typically used in most studies on oral secretions. The frequency of regurgitation appears to vary depending upon the host plant. Larval H. zea are less likely to regurgitate when feeding on tomato leaves compared to corn mid-whorl tissue. Our results have importance in understanding the role of oral secretions in plant recognition of herbivory. Because caterpillars did not routinely regurgitate during feeding, it is likely that they avoid the elicitation of some plant defensive responses during most feeding bouts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alborn, H. T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H., and Tumlinson, J. H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949.

    Article  CAS  Google Scholar 

  • Arimura, G., Volpe, V., Kunert, M., Maffei, M., and Boland, W. 2007. Terpenoid biosynthesis and signaling in legume plants in response to herbivorous damage, pp. 353–358, in A. Ramina, C. Chang, J. Giovannoni, H. Klee, P. Perata, and E. Woltering (eds.). Advances in Plant Ethylene ResearchSpringer, Dordrecht.

    Chapter  Google Scholar 

  • Arimura, G.-I., Kopke, S., Kunert, M., Volpe, V., David, A., Brand, P., Dabrowska, P., Maffei, M. E., and Boland, W. 2008. Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol 146:965–973.

    Article  PubMed  CAS  Google Scholar 

  • Bede, J., Musser, R., Felton, G., and Korth, K. 2006. Caterpillar herbivory and salivary enzymes decrease transcript Levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis. Plant Mol. Biol 60:519–531.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S. G., Boettner, G. H., and Yack, J. E. 2007. Clicking caterpillars: acoustic aposematism in Antheraea polyphemus and other Bombycoidea. J. Exp. Biol 210:993–1005.

    Article  PubMed  Google Scholar 

  • Chippendale, G. M. 1970. Metamorphic changes in fat body proteins of the southwestern corn borer, Diatraea grandiosella. J. Insect Physiol 16:1057–1068.

    Article  PubMed  CAS  Google Scholar 

  • Delphia, C. M., Mescher, M. C., Felton, G., and De moraes, C. M. 2006. The role of insect-derived cues in eliciting indirect plant defenses in tobacco, Nicotiana tabacum. Plant Sign. Behav 1:243–250.

    Google Scholar 

  • De Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.

    Article  CAS  Google Scholar 

  • Eichenseer, H., Mathews, M. C., Bi, J. L., Murphy, J. B., and Felton, G. W. 1999. Salivary glucose oxidase: multifunctional roles for Helicoverpa zea? Arch. Insect Biochem. Physiol 42:99–109.

    Article  PubMed  CAS  Google Scholar 

  • Fatouros, N. E., Broekgaarden, C., Bukovinszkine’kiss, G., Van Loon, J. J. A., Mumm, R., Huigens, M. E., Dicke, M., and Hilker, M. 2008. Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense. Proc. Natl. Acad. Sci 105:10033–10038.

    Article  PubMed  CAS  Google Scholar 

  • Felton, G. W. 2008. Caterpillar secretions and induced plant responses, pp. 369–387, in A. Schaller (ed.). Induced Plant Resistance to HerbivoryHohenheim, Germany: Springer.

    Chapter  Google Scholar 

  • Felton, G. W., and Tumlinson, J. H. 2008. Plant-insect dialogues: complex interactions at the plant-insect interface. Curr. Opinion Plant Biol 11:457–463.

    Article  CAS  Google Scholar 

  • Gomez, S. K., Cox, M. M., Bede, J. C., Inoue, K., Alborn, H. T., Tumlinson, J. H., and Korth, K. L. 2005. Lepidopteran herbivory and oral factors induce transcripts encoding novel terpene synthases in Medicago truncatula. Arch. Insect Biochem. Physiol 58:114–127.

    Article  PubMed  CAS  Google Scholar 

  • Grant, J. B. 2006. Diversification of gut morphology in caterpillars is associated with defensive behavior. J. Exp.Biol 209:3018–3024.

    Article  PubMed  Google Scholar 

  • Halitschke, R., Schittko, U., Pohnert, G., Boland, W., and Baldwin, I. T. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol 125:711–717.

    Article  PubMed  CAS  Google Scholar 

  • Howe, G. A., and Jander, G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol 59:41–66.

    Article  PubMed  CAS  Google Scholar 

  • Korth, K., and Thompson, G. 2006. Chemical signals in plants: jasmonates and the role of insect-derived elicitors in responses to herbivores, pp. 259–278, in S. Tuzun, and E. Bent (eds.). Multigenic and Induced Systemic Resistance in PlantsSpringer, Berlin.

    Chapter  Google Scholar 

  • Maffei, M. E., Mithöfer, A., and Boland, W. 2007. Insects feeding on plants: Rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946–2959.

    Article  PubMed  CAS  Google Scholar 

  • Mattiacci, L., Dicke, M., and Posthumus, M. A. 1995. β-Glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Nat. Acad. Sci. USA 92:2036–2040.

    Article  PubMed  CAS  Google Scholar 

  • Mithöfer, A., and Boland, W. 2008. Recognition of herbivory-associated molecular patterns. Plant Physiol 146:825–831.

    Article  PubMed  Google Scholar 

  • Mithöfer, A., Wanner, G., and Boland, W. 2005. Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168.

    Article  PubMed  Google Scholar 

  • Musser, R. O., Hum-Musser, S. M., Eichenseer, H., Peiffer, M., Ervin, G., Murphy, J. B., and Felton, G. W. 2002. Herbivory: Caterpillar saliva beats plant defences - A new weapon emerges in the evolutionary arms race between plants and herbivores. Nature 416:599–600.

    Article  PubMed  CAS  Google Scholar 

  • Musser, R. O., Cipollini, D. F., Hum-Musser, S. M., Williams, S. A., Brown, J. K., and Felton, G. W. 2005. Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants. Arch. Insect Biochem. Physiol 58:128–37.

    Article  PubMed  CAS  Google Scholar 

  • Musser, R. O., Farmer, E., Peiffer, M., Williams, S. A., and Felton, G. W. 2006. Ablation of caterpillar labial salivary glands: Technique for determining the role of saliva in insect-plant interactions. J. Chem. Ecol 32:981–992.

    Article  PubMed  CAS  Google Scholar 

  • Peiffer, M., and Felton, G. W. 2005. The host plant as a factor in the synthesis and secretion of salivary glucose oxidase in larval Helicoverpa zea. Arch. Insect Biochem. Physiol 58:106–13.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Saona, C., Chalmers, J., Raj, S., and Thaler, J. 2005. Induced plant responses to multiple damagers: differential effects on an herbivore and its parasitoid. Oecologia 143:566–577.

    Article  PubMed  Google Scholar 

  • Schittko, U., Preston, C. A., and Baldwin, I. T. 2000. Eating the evidence? Manduca sexta larvae can not disrupt specific jasmonate induction in Nicotiana attenuata by rapid consumption. Planta 210:343–346.

    Article  PubMed  CAS  Google Scholar 

  • Schmelz, E. A., Carroll, M. J., Leclere, S., Phipps, S. M., Meredith, J., Chourey, P. S., Alborn, H. T., and Teal, P. E. A. 2006. Fragments of ATP synthase mediate plant perception of insect attack. Proc. Natl. Acad. Sci 103:8894–8899.

    Article  PubMed  CAS  Google Scholar 

  • Schmelz, E. A., Leclere, S., Carroll, M. J., Alborn, H. T., and Teal, P. E. A. 2007. Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory. Plant Physiol 44:793–805.

    Article  Google Scholar 

  • Schmidt, D. D., Voelckel, C., Hartl, M., Schmidt, S., and Baldwin, I. T. 2005. Specificity in ecological interactions. Attack from the same lepidopteran herbivore results in species-specific transcriptional responses in two solanaceous host plants. Plant Physiol 138:1763–1773.

    Article  PubMed  CAS  Google Scholar 

  • Truitt, C. L., and Pare, P. W. 2004. In situ translocation of volicitin by beet armyworm larvae to maize and systemic immobility of the herbivore elicitor in planta. Planta 218:999–1007.

    Article  PubMed  CAS  Google Scholar 

  • Truitt, C. L., Wei, H.-X., and Pare, P. W. 2004. A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin. Plant Cell 16:523–532.

    Article  PubMed  CAS  Google Scholar 

  • Voelckel, C., and Baldwin, I. T. 2004. Generalist and specialist lepidopteran larvae elicit different transcriptional responses in Nicotiana attenuata, which correlate with larval FAC profiles. Ecol. Lett 7:770–775.

    Article  Google Scholar 

  • Weech, M.-H., Chapleau, M., Pan, L., Ide, C., and Bede, J. C. 2008. Caterpillar saliva interferes with induced Arabidopsis thaliana defence responses via the systemic acquired resistance pathway. J. Exp. Bot 59:2437–2448.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., Hettenhausen, C., Meldau, S., and Baldwin, I. T. 2007. Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–1122.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The support of the USDA NRI is greatly appreciated (2005-35607-15242 and 2007-35302-18218 awarded to G.W.F.). Statistical advice by Torrence Gill was helpful. All confocal (or digital) microscopy was done at the Cytometry Facility, University Park (Huck Institutes of the Life Sciences, Penn State University). This project is funded, in part, under a grant with the Pennsylvania Department of Health using Tobacco Settlement Funds. The Department specifically disclaims responsibility for any analyses, interpretations, or conclusions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary W. Felton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peiffer, M., Felton, G.W. Do Caterpillars Secrete “Oral Secretions”?. J Chem Ecol 35, 326–335 (2009). https://doi.org/10.1007/s10886-009-9604-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9604-x

Keywords

Navigation