Skip to main content
Log in

Synthesis and characterization of MnO-doped titanium pyrophosphates (Ti1-x Mn x P2O7; x = 0–0.2) for intermediate-temperature proton-conducting ceramic-electrolyte fuel cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

MnO-doped TiP2O7 (Ti1-x Mn x P2O7; x = 0–0.2) were synthesized by digesting oxide precursors with H3PO4 in a two-step synthesis method. Various compositions of Ti1-x Mn x P2O7 were characterized by X-ray diffraction (XRD), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). XRD of 1050 °C sintered samples showed the formation of (TiO)P2O7 in ≥15 mol% MnO-doped samples. SEM images of 1050 °C sintered Ti1-x Mn x P2O7 samples showed that MnO acts as a sintering aid, with the higher amount of MnO leading to a better densification. It was observed that the ionic conductivities of MnO-doped sintered samples were higher than that of undoped TiP2O7 (TiP) sample. The increase in ionic conductivity of MnO-doped TiP2O7 can be attributed to MnO acting as an acceptor dopant, and increased densification of the MnO-doped samples. In unhumidified air, among various MnO-doped samples, Ti0.9Mn0.1P2O7 (TMP10) showed the highest ionic conductivity with a magnitude of 6.29 × 10−8 S cm−1 at 250 °C and 1.33 × 10−5 S cm−1 at 500 °C. Furthermore, the ionic conductivity of TMP10 was higher than that of Ti0.88Mn0.12P2O7 (TMP12), which could be attributed to the formation of defect pairs in TMP12. The ionic conductivity of TMP10 showed >4 orders of magnitude increase in humidified air (pH2O = 0.12 atm) in 100–270 °C range with a maximum of 6.55 × 10−4 S cm−1 at 180 °C. In addition, comparison with the literature data showed that the ionic conductivity of TMP10 was higher than those observed for the high-temperature sintered TiP2O7 samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hibino T, Kobayashi K, Nagao M, Kawasaki S (2015) High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte. Sci Rep 5:7903(7)

    Article  Google Scholar 

  2. Hibino T, Kobayashi K, Nagao M (2013) An all-solid-state rechargeable aluminum-air battery with a hydroxide ion-conducting Sb(V)-doped SnP2O7 electrolyte. J Mater Chem A 1:14844–14848

    Article  CAS  Google Scholar 

  3. Singh B, Kim JH, Park JY, Song SJ (2015) Dense composite electrolytes of Gd3+-doped cerium phosphates for low-temperature proton-conducting ceramic-electrolyte fuel cells. Ceram. Inter 41:4814–4821

    Article  CAS  Google Scholar 

  4. Hibino T, Kobayashi K (2014) Mixed potential response for hydrocarbons in a protonconductive electrochemical cell operated at room temperature. J Electrochem Soc 161:H326–H331

    Article  CAS  Google Scholar 

  5. Singh B, Kim JH, Jeon SY, Park JY, Song S-J (2014) Mn2+-doped CeP2O7 composite electrolytes for application in low temperature proton-conducting ceramic electrolyte fuel cells. J Electrochem Soc 161:F133–F138

    Article  CAS  Google Scholar 

  6. Venckutė V, Dobrovolskis P, Šalkus T, Kežionis A, Dindune A, Kanepe Z, Ronis J, Fung K-Z, Orliukas AF (2015) Preparation and characterization of solid electrolytes based on TiP2O7 pyrophosphate. Ferroelectrics 479:101–109

    Article  Google Scholar 

  7. Wu W, Shanbhag S, Wise A, Chang J, Rutt A, Whitacre JF (2015) High performance TiP2O7 based intercalation negative electrode for aqueous lithium-ion batteries via a facile synthesis route. J Electrochem Soc 162:A1921–A1926

    Article  CAS  Google Scholar 

  8. Scott K, Xu C, Wu X (2014) Intermediate temperature proton-conducting membrane electrolytes for fuel cells. WIREs Energy Environ 3:24–41

    Article  CAS  Google Scholar 

  9. Nagao M, Kamiya T, Heo P, Tomita A, Hibino T, Sano M (2006) Proton conduction in In-doped SnP2O7 at intermediate temperatures. J Electrochem Soc 153:A1604–A1609

    Article  CAS  Google Scholar 

  10. Paschos O, Kunze J, Stimming U, Maglia F (2011) A review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cells. J Phys 23:234110

    CAS  Google Scholar 

  11. Sun Y, Gai L, Zhou Y, Zuo X, Zhou J, Jiang H (2014) Polyhierarchically structured TiP2O7/C microparticles with enhanced electrochemical performance for lithium-ion batteries. Cryst Eng Comm 16:10681–10691

    Article  CAS  Google Scholar 

  12. Senguttuvan P, Rousse G, Oro-Sole J, Tarascon JM, Palacin MR (2013) A low temperature TiP2O7 polymorph exhibiting reversible insertion of lithium and sodium ions. J Mater Chem A 1:15284–15291

    Article  CAS  Google Scholar 

  13. Arvindan V, Reddy MV, Madhavi S, Mhaisalkar SG, Subba Rao GV, Chowdari BVR (2011) Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode. J Power Sources 196:8850–8854

    Article  Google Scholar 

  14. Wang R, Ye J, Rauf A, Wu X, Liu H, Ning G, Jiang H (2016) Microwave-induced synthesis of pyrophosphate Zr1-xTixP2O7 and TiP2O7 with enhanced sorption capacity for uranium (VI). J Hazardous Mater 315:76–85

    Article  CAS  Google Scholar 

  15. Ai M (1989) Preparation of high-surface-area titanium-vanadium binary pyrophosphate catalysts. App Catal 48:51–61

    Article  CAS  Google Scholar 

  16. Marcu IC, Millet JM, Sandulescu I (2005) Oxidative dehydrogenation of isobutane over a titanium pyrophosphate catalyst. J Serb Chem Soc 70:791–798

    Article  CAS  Google Scholar 

  17. Loridant S, Marcu IC, Bergeret G, Millet JMM (2003) TiP2O7 catalysts characterised by in situ Raman spectroscopy during the oxidative dehydrogenation of n-butane. Phys Chem Chem Phys 5:4384–4389

    Article  CAS  Google Scholar 

  18. Lapina A, Chatzichristodoulou C, Hallinder J, Holtappels P, Mogensen M (2014) Electrical conductivity of titanium pyrophosphate between 100 and 400 °C: effect of sintering temperature and phosphorus content. J Solid State Electrochem 18:39–47

    Article  CAS  Google Scholar 

  19. Nalini V, Haugsrud R, Norby T (2010) High-temperature proton conductivity and defect structure of TiP2O7. Solid State Ionics 181:510–516

    Article  CAS  Google Scholar 

  20. Nalini V, Sorby MH, Amezawa K, Haugsrud R, Fjellvag H, Norby T (2011) Structure, water uptake, and electrical conductivity of TiP2O7. J Am Cer Soc 94:1514–1522

    Article  CAS  Google Scholar 

  21. Singh B, Jeon SY, Kim JH, Park JY, Bae CS, Song SJ (2014) Ionic conductivity of Gd3+ doped cerium pyrophosphate electrolytes with core-shell structure. J Electrochem Soc 161:F464–F472

    Article  CAS  Google Scholar 

  22. Kim JH, Singh B, Hong JW, Im HN, Song SJ (2016) Electrical behavior and stability of K2HPO4-KH5(PO4)2-Ce0.9Gd0.1P2O7 composite electrolytes for intermediate temperature proton-conducting fuel cells. J Electrochem Soc 163:225–229

    Article  Google Scholar 

  23. Shen YB, Nishida M, Kanematsu W, Hibino T (2011) Synthesis and characterization of dense SnP2O7-SnO2 composite ceramics as intermediate-temperature proton conductors. J Mater Chem 21:663–670

    Article  CAS  Google Scholar 

  24. Jin YC, Nishida M, Kanematsu W, Hibino T (2011) An H3PO4-doped polybenzimidazole/Sn0.95Al0.05P2O7 composite membrane for high-temperature proton exchange membrane fuel cells. J Power Sources 196:6042–6047

    Article  CAS  Google Scholar 

  25. Kim JH, Park EJ, Lim DK, Singh B, Bae C, Song SJ (2015) Fabrication of dense cerium pyrophosphate-polystyrene composite for application as low-temperature proton-conducting electrolytes. J Electrochem Soc 162:F1159–F1164

    Article  CAS  Google Scholar 

  26. Singh B, Kim JH, Jeon SY, Park JY, Song SJ (2014) Mn2+-doped CeP2O7 composite electrolytes for application in low temperature proton-conducting ceramic electrolyte fuel cells. J Electrochem Soc 161:F133

    Article  CAS  Google Scholar 

  27. Singh B, Im HN, Park JY, Song SJ (2015) Effect of partial substitution of Sn4+ by M4+ (M = Si, Ti, and Ce) on sinterability and ionic conductivity of SnP2O7. Ceram. Inter 41:3339–3343

    Article  CAS  Google Scholar 

  28. Xiao J, Zhang H, Yang Z, Wang H, Ma G, Zhou Z (2012) Proton and oxide-ion conduction in ZnO doped SnP2O7 ceramics. J Alloy Compd 521:106–111

    Article  CAS  Google Scholar 

  29. Singh B, Kim JH, Parkash O, Song SJ (2016) Effect of MnO doping in tetravalent metal pyrophosphate (MP2O7;=Ce, Sn, Zr) electrolytes. Ceram Inter 42:2983–2989

    Article  CAS  Google Scholar 

  30. Wang H, Sun L, Fan S, Cui Y (2014) Electrical properties of an intermediate temperature ionic conductor, Ti0.95Al0.05P2O7. Ceram Int 40:15399–15402

    Article  CAS  Google Scholar 

  31. Wang H, Sun L, Luo C, Yin R, Cui Y (2015) Electrical properties of Ti0.95Mg0.05P2O7 at intermediate temperatures. Ceram Int 41:2124–2127

    Article  CAS  Google Scholar 

  32. Sanz J, Iglesias JE, Soria J, Losilla ER, Aranda MAG, Bruque S (1997) Structural disorder in the cubic 3 × 3 × 3 superstructure of TiP2O7. XRD and NMR study. Chem Mater 9:996–1003

    Article  CAS  Google Scholar 

  33. Singh B, Kim JH, Park JY, Song SJ (2014) Ionic conductivity of Mn2+ doped dense tin pyrophosphate electrolytes synthesized by a new co-precipitation method. J European Cer Soc 34:2967–2976

    Article  CAS  Google Scholar 

  34. Mal'shikov AE, Bondar IA (1989) Neorg Mater 25(6):984

    Google Scholar 

  35. Chernorukov NG, Zhuk MI, Moskvichev EP (1974) Thermal stability of disubstituted titanium phosphate monohydrate. Tr Khim Tekh 3:9

    Google Scholar 

  36. Phadke SR, Bowers CR, Wachsman ED, Nino JC (2011) Proton conduction in acceptor doped SnP2O7. Solid State Ionics 83:26–31

    Article  Google Scholar 

  37. Bamberger CE, Begun GM (1987) Synthesis and characterization of titanium phosphates, TiP2O7 and (TiO)2P2O7. J Less-Common Metals 134:201–206

    Article  CAS  Google Scholar 

  38. Xiao J, Zhang HM, Yang ZJ, Wang WB, Ma GL (2012) Proton and oxide-ion conduction in ZnO doped SnP2O7 ceramics. J Alloys Compd 521:106–111

    Article  CAS  Google Scholar 

  39. Foschini CR, Perazolli L, Varela JA (2004) Sintering of tin oxide using zinc oxide as a densification aid. J Mater Sci 39:5825

    Article  CAS  Google Scholar 

  40. M.N. Rahman, Sintering and microstructure development, in Ceramic Processing, CRC Press, (2007) pp. 365–451.

  41. P. Reijnen, Nonstoichiometry and sintering of ionic solids, in Reactivity of Solids, eds. J.W. Mitchell et al., John Wiley & Sons, New York, 1969, p. 99.

  42. Singh B, Im HN, Park JY, Song SJ (2013) Electrical conductivity of M2+-doped (M = Mg, Ca, Sr, Ba) cerium pyrophosphate-based composite electrolyte for low-temperature proton conducting electrolyte fuel cells. J Alloy Comp 578:279–285

    Article  CAS  Google Scholar 

  43. Tanimoto S, Hirukawa S, Shirai T, Sato S, Kusano T, Saito M, Kuwano J, Shiroishi H (2009) Shell-core type proton conducting TiP2O7-based solid electrolytes. Key Engg Mater 388:57–60

    Article  CAS  Google Scholar 

  44. Tomita A, Kajiyama N, Kamiya T, Nagao M, Hibino T (2007) Intermediate-temperature proton conduction in Al3+-doped SnP2O7. J Electrochem Soc 154:B1265–B1269

    Article  CAS  Google Scholar 

  45. Kreuer KD (2003) Proton-conducting oxides. Annu Rev Mater Res 33:333–359

    Article  CAS  Google Scholar 

  46. Savaniu C, Irvine JTS (2003) Sr3Ca1−xZnxZr0.5Ta1.5O8.75: a study of the influence of the B-site dopant nature upon protonic conduction. Solid State Ionics 162-163:105–113

    Article  CAS  Google Scholar 

  47. Lee JH, Yoon SM, Kim BK, Lee HW, Song HS (2001) Electrical conductivity and defect structure of yttria-doped ceria-stablized zirconia. Solid State Ionics 144:175–184

    Article  CAS  Google Scholar 

  48. B. Singh, A. Bhardwaj, S.K. Gautam, D. Kumar, O. Parkash, I.H. Kim, S.J. Song, Fast ionic conduction in tetravalent metal pyrophosphate-alkali carbonate composites: New potential electrolytes for intermediate-temperature fuel cells, J. Power Sources, accepted, doi:10.1016/j.jpowsour.2017.02.006

  49. Singh B, Im HN, Park JY, Song SJ (2012) Electrical behavior of CeP2O7 for the application in low-temperature proton conducting ceramic fuel cells. J Electrochem Soc 159:F819–F825

    Article  CAS  Google Scholar 

  50. Singh B, Im HN, Park JY, Song SJ (2013) Studies on ionic conductivity of Sr2+-doped CeP2O7 electrolyte in humid atmosphere. J Phys Chem C 117:2653–2661

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, India (R&D/SERB/RNJ/Ceramic/15-16/04), and Korea CCS R&D Center (KCRC) grant (No. 2014M1A8A1049351) funded by the Korea government (Ministry of Science, ICT & Future Planning).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhupendra Singh or Sun-Ju Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Bhardwaj, A., Gautam, S.K. et al. Synthesis and characterization of MnO-doped titanium pyrophosphates (Ti1-x Mn x P2O7; x = 0–0.2) for intermediate-temperature proton-conducting ceramic-electrolyte fuel cells. Ionics 23, 1675–1684 (2017). https://doi.org/10.1007/s11581-017-2024-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2024-y

Keywords

Navigation