Skip to main content
Log in

Optimized AC conductivity correlated to structure, morphology and thermal properties of PVDF/PVA/Nafion composites

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polyvinylidene fluoride (PVDF) and polyvinyl alcohol (PVA) composites were prepared by controlled loading of Nafion (5 to 15 wt%) by solution casting using water and dimethylformamide (DMF) as a solvent. The surface morphology of composite analyzed by atomic force microscopy (AFM) reveals the presence of Nafion ionomers. The increase in interlayer spacing of modified PVDF/PVA polymer system as a function of Nafion was detected by X-ray diffraction (XRD). The major change in Fourier transform infrared (FTIR) spectroscopy confirms the chemical bond C=O stretching around 1,700 cm−1 due to Nafion. Differential scanning calorimetry (DSC) demonstrates the thermal stability of polymer composites and the decrease in melting temperature (T m). The optimized AC conductivity (σ) of the prepared composite was evaluated by using an impedance analyzer as a function of temperature (40 to 150 °C) at constant 30-MHz frequency. The highest conductivity of 1.3 × 10−2 S m−1 was observed at 80 °C for 10 wt% of Nafion and correlated with structure, morphology and thermal properties of modified PVDF/PVA/Nafion composites. The experimental results may be useful for sensors, fuel cells and battery application domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rajendran S, Sivakumar M, Subadevi R, Nirmala M (2004) Physica B 348:73–78

    Article  CAS  Google Scholar 

  2. Gnana Kumar G, Dae Nyung L, Kim P, Kee SN, Nimma Elizabeth R (2008) Eur Polym J 44:2225–2230

    Article  Google Scholar 

  3. Pradeep KV, Shikha G (2011) Ionics 17:479–483

    Article  Google Scholar 

  4. Neetika G, Shalini S, Irfan Ahmad M, Kumar D (2006) J Sci Ind Res 65:549–557

    Google Scholar 

  5. Hyeonseok Y (2013) Nanomaterials 3:524–549

    Article  Google Scholar 

  6. Xuemei C, Chaowei Z, Shuren Z, Haocai W (1997) J Mater Sci Lett 16:253–254

    Article  Google Scholar 

  7. Angulakshmi N, Sabu T, Nahm KS, Manuel AS, Nimma Elizabeth R (2011) Ionics 17:407–414

    Article  CAS  Google Scholar 

  8. Christie MH, Nikolaos AP (2000) Adv Polym Sci 153:37–65

    Article  Google Scholar 

  9. Viswanathan B, Helen (2007) Bull Catal Soc India 6:50–66

    Google Scholar 

  10. Kenneth AM, Robert BM (2004) Chem Rev 104:4535–4585

    Article  Google Scholar 

  11. Sergio M, Vicente C (2011) J Power Sources 96:2699–2708

    Google Scholar 

  12. Sahu AK, Pitchumani S, Sridhar P, Shukla AK (2009) Bull Mater Sci 32(3):285–294

    Article  CAS  Google Scholar 

  13. Ki-Yun C, Ho-Young J, Nam-Soon C, Shi-Joon S, Jung-Ki P, Jong-Ho C, Yung-Eun S (2005) Solid State Ion 176:3027–3030

    Article  Google Scholar 

  14. Mohammad SK, Uzma K, Gulfam N (2009) J Pak Mater Soc 3(1):22–26

    Google Scholar 

  15. Sanjeeva MN (2004) Rigaku J 21(1):15–24

    Google Scholar 

  16. Rohit B, Shi-Qing W, Jack LK (2003) Adv Polym Sci 163:137–191

    Article  Google Scholar 

  17. Rana DS, Chaturvedi DK, Quamara JK (2009) Optoelectron Adv Mater—Rapid Commun 3(7):737–743

    CAS  Google Scholar 

  18. Nadzrinahamin AN, Namil K, Wilder GI, Antál J, Thein K (2012) Polymer 53:196–204

    Article  Google Scholar 

  19. Akpanekong EO (2012) “Fabrication and Evaluation of Polyvinylidene Flouride/Polyvinyl Alcohol (PVA/PVDF) Hybrid Membranes for Lithium-Air Battery Applications” Electronic Theses, Treatises and Dissertations, The Florida State University

  20. Zhehui L, Philippe M, Robert J (1997) Polymer 38:4925–4929

    Article  Google Scholar 

  21. Qing-xin Z, Zhi-Shen M (2001) Chin J Polym Sci 19(3):237–246

    Google Scholar 

  22. Li Q, Xue QZ, Gao XL, Zheng QB (2009) Express Polym Lett 3(12):769–777

    Article  CAS  Google Scholar 

  23. Nor Akmal MJ, Mohamed Afendi MP, Nor Asiah M, Zainir RA, Nur Faizal K, Qamarul EK (2013) Int J Electr Eng Informat 5(2):217–225

    Google Scholar 

  24. Mohd Hamzah H, Elias S, Anuar K, Muhd Yousuf H, Iskandar SM, Muhd Ahmad AO (2008) Malays Polym J 3(2):24–31

    Google Scholar 

  25. Dutta P, Biswas S, Ghosh M, De SK, Chatterjee S (2001) Synth Met 122:455–461

    Article  CAS  Google Scholar 

  26. Nanda Prakash MB, Manjunath A, Somashekar R (2013) Adv Condens Matter Phys 2013:1–7

    Article  Google Scholar 

  27. Tamilselvi P, Hema M (2014) Physica B 437:53–57

    Article  CAS  Google Scholar 

  28. Shaker E, Abdel-Hady K, Moataz S (2009) Curr Appl Phys 9:448–454

    Article  Google Scholar 

  29. Joshi GM, Khatake SM, Kaleemulla S, Rao NM, Cuberes T (2011) Curr Appl Phys 11:1322–1325

    Article  Google Scholar 

  30. Joshi GM, Teresa CM (2013) Ionics 9:947–950

    Article  Google Scholar 

  31. Joshi GM, Pasha SK, Chidambaram K (2013) Comp Inter 20:331–341

    Article  CAS  Google Scholar 

  32. Joshi GM, Deshmukh K (2013) Ionics. doi:10.1007/s11581-013-0995-x

    Google Scholar 

Download references

Acknowledgments

The authors are highly grateful for the provided electrical characterization facility under the Naval Research Board, Defense Research and Development Organization, New Delhi, under Project No. 259/Mat./11-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish M. Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, M., Joshi, G.M., Deshmukh, K. et al. Optimized AC conductivity correlated to structure, morphology and thermal properties of PVDF/PVA/Nafion composites. Ionics 20, 1427–1433 (2014). https://doi.org/10.1007/s11581-014-1111-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1111-6

Keywords

Navigation