Skip to main content
Log in

A review on polyaniline and its composites: from synthesis to properties and progressive applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyaniline (PAni) is a widely studied conductive polymer that has unique properties such as high conductivity and stability. However, poor solubility and mechanical properties limit its prospective applications. To overcome these limitations, different synthesis methods have been developed and studied. One of these methods is to make the composites of PAni which displayed prominent results not only in addressing poor stability but also in achieving high mechanical properties. This review summarizes various synthesis methods, properties, and applications of PAni composites that have been incorporated with different materials such as carbon, carbon nanotube, graphite, graphene oxide, metal and metal oxides, metal–organic framework, bio-molecules, silica, and many more to enhance their potential applications. The most important applications of the PAni composite are briefly revealed at the end of this review and discussed appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Source: Reproduced with permission from reference [106], copyright [2024], [Elsevier].

Figure 13
Figure 14

Source: Adapted with permission from reference [177], copyright [2023], [The Royal Society of Chemistry].

Figure 15

Source: Adapted with permission from reference [256], copyright [2022], [MDPI].

Figure 16

Source: Adapted with permission from reference [271], copyright [2020], [The Royal Society of Chemistry].

Similar content being viewed by others

Data availability

The data of this study will be made available from the corresponding author upon reasonable request.

References

  1. Chandrasekhar P (2018) Conducting polymers, fundamentals and applications. Springer, New York, p 850

    Book  Google Scholar 

  2. Guo X, Facchetti A (2020) The journey of conducting polymers from discovery to application. Nat Mater 19:922–928

    Article  CAS  PubMed  Google Scholar 

  3. Shaw JM, Seidler PF (2001) Organic electronics: introduction. IBM J Res Dev 45:3–9

    Article  CAS  Google Scholar 

  4. Eftekhari A (2011) Nanostructured conductive polymers, Wiley

  5. Hong X, Liu Y, Li Y, Wang X, Fu J, Wang X (2020) Application progress of polyaniline, polypyrrole and polythiophene in lithium-sulfur batteries. Polymers 12:331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew Chem Int Ed 40:2591–2611

    Article  CAS  Google Scholar 

  7. Stejskal J, Gilbert RG (2022) Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74: 857–867

  8. Miyatake K, Iyotani H, Yamamoto K, Tsuchida E (1996) Synthesis of poly (phenylene sulfide sulfonic acid) via poly (sulfonium cation) as a thermostable proton-conducting polymer. Macromolecules 29:6969–6971

    Article  CAS  Google Scholar 

  9. Sahiner N, Demirci S (2016) Conducting semi-interpenetrating polymeric composites via the preparation of poly (aniline), poly (thiophene), and poly (pyrrole) polymers within superporous poly (acrylic acid) cryogels. React Funct Polym 105:60–65

    Article  CAS  Google Scholar 

  10. MacDiarmid AG, Epstein AJ (1993) Conducting polymers: past, present and future. MRS Online Proc Libr 328:133

    Article  Google Scholar 

  11. Li Y, Lu D, Wong CP (2010) Electrical conductive adhesives with nanotechnologies. Springer, Boston, MA, pp 361–424

    Book  Google Scholar 

  12. Partridge AC, Jansen ML, Arnold WM (2000) Conducting polymer-based sensors. Mater Sci Eng C 12:37–42

    Article  Google Scholar 

  13. Roth S, Graupner W (1993) Conductive polymers: evaluation of industrial applications. Synth Met 57:3623–3631

    Article  CAS  Google Scholar 

  14. Somani P, Mandale AB, Radhakrishnan SJAM (2000) Study and development of conducting polymer-based electrochromic display devices. Acta Mater 48:2859–2871

    Article  CAS  Google Scholar 

  15. Katz HE, Searson PC, Poehler TO (2010) Batteries and charge storage devices based on electronically conducting polymers. J Mater Res 25:1561–1574

    Article  CAS  Google Scholar 

  16. Erokhin V, Berzina T, Fontana MP (2005) Hybrid electronic device based on polyaniline-polyethyleneoxide junction. J Appl Phys 97:064501

    Article  Google Scholar 

  17. Menon R, Yoon CO, Moses D, Heeger AJ, Skotheim TA, Elsenbaumer RL, Reynolds JR, Handbook of conducting polymers. Handbook of Conducting Polymers, 1998, 27–84.

  18. Tsotra P, Friedrich K (2004) Short carbon fiber reinforced epoxy resin/polyaniline blends: their electrical and mechanical properties. Compos Sci Technol 64:2385–2391

    Article  CAS  Google Scholar 

  19. Pud A, Ogurtsov N, Korzhenko A, Shapoval G (2003) Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog Polym Sci 28:1701–1753

    Article  CAS  Google Scholar 

  20. Coltevieille D, Le Mehaute A, Challioui C, Mirebeau P, Demay JN (1999) Industrial applications of polyaniline. Synth Met 101:703–704

    Article  Google Scholar 

  21. Bhattacharya A, De A (1996) Conducting composites of polypyrrole and polyaniline a review. Prog Solid State Chem 24:141–181

    Article  CAS  Google Scholar 

  22. Sathiyanarayanan S, Dhawan SK, Trivedi DC, Balakrishnan K (1992) Soluble conducting poly ethoxy aniline as an inhibitor for iron in HCl. Corros Sci 33(12):1831–1841

    Article  CAS  Google Scholar 

  23. Hendi AA, Awad MA, Ortashi KM (2023) Electrodeposited polyaniline based carbon nanotubes fiber as efficient counter electrode in wire-shaped dye sensitized solar cells. Nanotechnology 35(8):085704

    Article  Google Scholar 

  24. Saadattalab V, Shakeri A, Gholami H (2016) Effect of CNTs and nano ZnO on physical and mechanical properties of polyaniline composites applicable in energy devices. Progress Natl Sci Mater International 26(6):517–522

    Article  CAS  Google Scholar 

  25. Baniasadi HSAAR, Mashayekhan S, Ghaderinezhad F (2014) Preparation of conductive polyaniline/graphene nanocomposites via in situ emulsion polymerization and product characterization. Synth Met 196:199–205

    Article  CAS  Google Scholar 

  26. Li H, Liu S, Li P, Yuan D, Zhou X, Sun J, He C (2018) Interfacial control and carrier tuning of carbon nanotube/polyaniline composites for high thermoelectric performance. Carbon 136:292–298

    Article  CAS  Google Scholar 

  27. Rasmussen SC (2017) The early history of polyaniline: discovery and origins. Substantia 1:99–109

    Google Scholar 

  28. Genies EM, Boyle A, Lapkowski M, Tsintavis C (1990) Polyaniline: a historical survey. Synth Met 36:139–182

    Article  CAS  Google Scholar 

  29. Shinohara H, Chiba T, Aizawa M (1988) Enzyme microsensor for glucose with an electrochemically synthesized enzyme-polyaniline film. Sensors Actuators 13:79–86

    Article  Google Scholar 

  30. Masters JG, Sun Y, MacDiarmid AG, Epstein AJ (1991) Polyaniline: allowed oxidation states. Synth Met 41:715–718

    Article  CAS  Google Scholar 

  31. MacDiarmid AG, Epstein AJ (1989) Polyanilines: a novel class of conducting polymers. Faraday Discuss Chem Soc 88:317–332

    Article  CAS  Google Scholar 

  32. MacDiarmid AG, Chiang JC, Richter AF, Epstein AA (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18:285–290

    Article  CAS  Google Scholar 

  33. Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23:1443–1484

    Article  CAS  Google Scholar 

  34. Rasmussen SC (2020) Conjugated and conducting organic polymers: the first 150 years. Chem Plus Chem 85:1412–1429

    CAS  PubMed  Google Scholar 

  35. Haghi AK (2009) Conducting polymers. J Balkan Tribol Assoc 15:141–155

    CAS  Google Scholar 

  36. Mortimer RJ (1997) Electrochromic materials. Chem Soc Rev 26:147–156

    Article  CAS  Google Scholar 

  37. Ocampo AM, Santos LR, Julian S, Bailon MX, Bautista J (2018) Polyaniline-based cadaverine sensor through digital image colorimetry. e-Polymers 18:465–471

    Article  CAS  Google Scholar 

  38. Boeva ZA, Sergeyev VG (2014) Polyaniline: synthesis, properties, and application. Polym Sci Ser C 56:144–153

    Article  CAS  Google Scholar 

  39. Kumar P, Narayan Maiti U, Sikdar A, Kumar Das T, Kumar A, Sudarsan V (2019) Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym Rev 59:687–738

    Article  CAS  Google Scholar 

  40. Skotheim TA, Elsenbaumer RL, Reynold J (1998) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  41. Malinauskas A (2001) Chemical deposition of conducting polymers. Polymer 42:3957–3972

    Article  CAS  Google Scholar 

  42. Syed AA, Dinesan MK (1991) Polyaniline-A novel polymeric material-review. Talanta 38:815–837

    Article  CAS  PubMed  Google Scholar 

  43. Vivekanandan J, Ponnusamy V, Mahudeswaran A, Vijayanand PS (2011) Synthesis, characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods. Arch Appl Sci Res 3:147–153

    CAS  Google Scholar 

  44. Yang L, Yang L, Wu S, Wei F, Hu Y, Xu X, Sun D (2020) Three-dimensional conductive organic sulfonic acid co-doped bacterial cellulose/polyaniline nanocomposite films for detection of ammonia at room temperature. Sens Actuators B Chem 323:128689

    Article  CAS  Google Scholar 

  45. Waware US, Umare SS (2005) Chemical synthesis, spectral characterization and electrical properties of poly (aniline-co-m-chloroaniline). React Funct Polym 65:343–350

    Article  CAS  Google Scholar 

  46. Rikabi AAKK, Nechifor AC, Mohammed TJ, Oprea O, Miron AR, Segarceanu M, Vaireanu DI (2016) Nano composite membrane on polysulphone matrix. Rev Chim 67:1489–1497

    Google Scholar 

  47. Blinova NV, Stejskal J, Trchova M, Prokes J, Omastova M (2007) Polyaniline and polypyrrole: a comparative study of the preparation. Eur Polym J 43:2331–2341

    Article  CAS  Google Scholar 

  48. Dan A, Sengupta PK (2004) Synthesis and characterization of polyaniline prepared in formic acid medium. J Appl Polym Sci 91:991–999

    Article  CAS  Google Scholar 

  49. Erdem E, Karakışla M, Sacak M (2004) The chemical synthesis of conductive polyaniline doped with dicarboxylic acids. Eur Polym J 40:785–791

    Article  CAS  Google Scholar 

  50. Stejskal J, Hlavata D, Holler P, Trchova M, Prokes J, Sapurina I (2004) Polyaniline prepared in the presence of various acids: a conductivity study. Polym Int 53:294–300

    Article  CAS  Google Scholar 

  51. Chiang JC, MacDiarmid AG (1986) Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime. Synth Met 13:193–205

    Article  CAS  Google Scholar 

  52. Abdiryim T, Jamal R, Nurulla I (2007) Doping effect of organic sulphonic acids on the solid-state synthesized polyaniline. J Appl Polym Sci 105:576–584

    Article  CAS  Google Scholar 

  53. Kulkarni MV, Viswanath AK (2004) Scanning electron microscopy, spectroscopy, and thermal studies of polyaniline doped with various sulfonic acids. J Macromol Sci Part A 41:1173–1186

    Article  Google Scholar 

  54. Liu Y, Wen Q, Guan JL, Zhao SJ, Hu QX, Hou ZF, Yu QZ (2013) Structure-property relationship of dodecylbenzenesulfonic acid doped polyaniline. Adv Mater Res 721:199–205

    Article  Google Scholar 

  55. Dominic J, David T, Vanaja A, Kumar KS (2016) Effect of LiCl on conductivity of polyaniline synthesized via in-situ chemical oxidative method. Eur Polym J 85:236–243

    Article  CAS  Google Scholar 

  56. Rehim MA, Youssef A, Hassan E, Khatab N, Turky G (2010) Morphology and electrical properties of hybrid and sulphonated oxalic acid-doped polyaniline. Synth Met 160:1774–1779

    Article  Google Scholar 

  57. Anbarasan R, Sangeeth V, Saravanan M, Rajkumar R, Anandhaalaguraja M, Dhanalakshmi V (2011) Effect of substituents and dopants on the structure-property relationship of poly (Aniline)—A comparative study. J Macromol Sci Part B Phys 50:704–719

    Article  CAS  Google Scholar 

  58. Gok A, Sari B (2002) Chemical synthesis and characterization of some conducting polyaniline derivatives: Investigation of the effect of protonation medium. J Appl Polym Sci 84:1993–2000

    Article  CAS  Google Scholar 

  59. Jiang H, Geng Y, Li J, Jing X, Wang F (1997) Organic acid doped polyaniline derivatives. Synth Met 84:125–126

    Article  CAS  Google Scholar 

  60. Sinha S, Bhadra S, Khastgir D (2009) Effect of dopant type on the properties of polyaniline. J Appl Polym Sci 112:3135–3140

    Article  CAS  Google Scholar 

  61. Bhadra S, Singha NK, Khastgir D (2008) Effect of aromatic substitution in aniline on the properties of polyaniline. Eur Polym J 44:1763–1770

    Article  CAS  Google Scholar 

  62. Bilal S, Jehan A, Ur Rahman S, Ali Shah A (2020) Effect of synthesis temperature on properties of polyaniline. J Sci Innov Res 9:22–27

    Article  Google Scholar 

  63. Bláha M, Varga M, Prokes J, Zhigunov A, Vohlidal J (2013) Effects of the polymerization temperature on the structure, morphology and conductivity of polyaniline prepared with ammonium peroxodisulfate. Eur Polym J 49:3904–3911

    Article  Google Scholar 

  64. Inzelt G (2012) Conducting polymers: a new era in electrochemistry. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  65. Mondal SK, Prasad KR, Munichandraiah N (2005) Analysis of electrochemical impedance of polyaniline films prepared by galvanostatic, potentiostatic and potentiodynamic methods. Synth Met 148:275–286

    Article  CAS  Google Scholar 

  66. Firat YE, Peksoz AHMET (2017) Electrochemical synthesis of polyaniline/inorganic salt binary nanofiber thin films for electrochromic applications. J Mater Sci Mater Electron 28:3515–3522

    Article  CAS  Google Scholar 

  67. Yazdanpanah A, Ramedani A, Abrishamkar PB, Milan ZS, Moghadan NPS, Chauhan MM (2019) Synthetic route of PANI (V): electrochemical polymerization. In: Fundamentals and emerging applications of polyaniline, Elsevier, 105-119

  68. Hussain AM, Kumar A (2003) Electrochemical synthesis and characterization of chloride doped polyaniline. Bull Mater Sci 26:329–334

    Article  CAS  Google Scholar 

  69. Tuken T, Ozyılmaz AT, Yazici B, Erbil MEHMET (2003) Electrochemical synthesis of polyaniline on mild steel in acetonitrile–LiClO4 and corrosion performance. Appl Surf Sci 236:292–305

    Article  Google Scholar 

  70. Jiang X, Setodoi S, Fukumoto S, Imae I, Komaguchi K, Yano J, Harima Y (2014) An easy one-step electrosynthesis of graphene/polyaniline composites and electrochemical capacitor. Carbon 67:662–672

    Article  CAS  Google Scholar 

  71. Chen W (2011) Electrochemical polymerization of benzoxazines, In: Handbook of benzoxazine resins, Elsevier, 175-181

  72. Dallas P, Stamopoulos D, Boukos N, Tzitzios V, Niarchos D, Petridis D (2007) Characterization, magnetic and transport properties of polyaniline synthesized through interfacial polymerization. Polymer 48:3162–3169

    Article  CAS  Google Scholar 

  73. Huang J, Kaner RB (2004) A general chemical route to polyaniline nanofibers. J Am Chem Soc 126:851–855

    Article  CAS  PubMed  Google Scholar 

  74. Chen J, Chao D, Lu X, Chang W (2007) Novel interfacial polymerization for radially oriented polyaniline nanofibers. Mater Lett 61(6):1419–1423

    Article  CAS  Google Scholar 

  75. Guan H, Fan LZ, Zhang H, Qu X (2010) Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochim Acta 56:964–968

    Article  CAS  Google Scholar 

  76. Sivakumar M, Gedanken A (2005) A sonochemical method for the synthesis of polyaniline and Au–polyaniline composites using H2O2 for enhancing rate and yield. Synth Met 148:301–306

    Article  CAS  Google Scholar 

  77. Jing X, Wang Y, Wu D, Qiang J (2007) Sonochemical synthesis of polyaniline nanofibers. Ultrason Sonochem 14:75–80

    Article  CAS  PubMed  Google Scholar 

  78. Mathai CJ, Saravanan S, Anantharaman MR, Venkitachalam S, Jayalekshmi S (2002) Characterization of low dielectric constant polyaniline thin film synthesized by ac plasma polymerization technique. J Phys D Appl Phys 35:240

    Article  CAS  Google Scholar 

  79. Nastase C, Nastase F, Dumitru A, Ionescu M, Stamatin I (2005) Thin film composites of nanocarbons-polyaniline obtained by plasma polymerization technique. Compos A Appl Sci Manuf 36:481–485

    Article  Google Scholar 

  80. Shi FF (1996) Recent advances in polymer thin films prepared by plasma polymerization synthesis, structural characterization, properties and applications. Surf Coat Technol 82:1–15

    Article  CAS  Google Scholar 

  81. Perez-Page M, Yu E, Li J, Rahman M, Dryden DM, Vidu R, Stroeve P (2016) Template-based syntheses for shape controlled nanostructures. Adv Coll Interface Sci 234:51–79

    Article  CAS  Google Scholar 

  82. Wu CG, Bein T (1994) Conducting polyaniline filaments in a mesoporous channel host. Science 264:1757–1759

    Article  CAS  PubMed  Google Scholar 

  83. Cao H, Xu Z, Sheng D, Hong J, Sang H, Du Y (2001) An array of iron nanowires encapsulated in polyaniline nanotubules and its magnetic behaviour. J Mater Chem 11:958–960

    Article  CAS  Google Scholar 

  84. Xiong S, Wang Q, Xia H (2004) Template synthesis of polyaniline/TiO2 bilayer microtubes. Synth Met 146:37–42

    Article  CAS  Google Scholar 

  85. Cai Z, Martin CR (1989) Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. J Am Chem Soc 111:4138–4139

    Article  CAS  Google Scholar 

  86. Wei Z, Zhang Z, Wan M (2002) Formation mechanism of self-assembled polyaniline micro/nanotubes. Langmuir 18:917–921

    Article  CAS  Google Scholar 

  87. Xing S, Zhao C, Jing S, Wang Z (2006) Morphology and conductivity of polyaniline nanofibers prepared by ‘seeding’polymerization. Polymer 47:2305–2313

    Article  CAS  Google Scholar 

  88. Liu W, Kumar J, Tripathy S, Senecal KJ, Samuelson L (1999) Enzymatically synthesized conducting polyaniline. J Am Chem Soc 121:71–78

    Article  CAS  Google Scholar 

  89. Nabid MR, Golbabaee M, Moghaddam AB, Dinarvand R, Sedghi R (2008) Polyaniline/TiO2 nanocomposite: enzymatic synthesis and electrochemical properties. Int J Electrochem Sci 3:1117–1126

    Article  CAS  Google Scholar 

  90. Guo Q, Yi C, Zhu L, Yang Q, Xie Y (2005) Chemical synthesis of cross-linked polyaniline by a novel solvothermal metathesis reaction of p-dichlorobenzene with sodium amide. Polymer 46:3185–3189

    Article  CAS  Google Scholar 

  91. Jensen AT, Neto WS, Ferreira GR, Glenn AF, Gambetta R, Gonçalves SB, Machado F, Synthesis of polymer/inorganic hybrids through heterophase polymerizations. In: Recent developments in polymer macro, micro and nano blends, 2017, 207–235

  92. Kiseleva SG, Orlov AV, Karpacheva GP, Composite electroconductive materials based on polyaniline. In: Analytical chemistry from laboratory to process line, Apple Academic Press, 2018, 57-64

  93. Schrade A, Landfester K, Ziener U (2013) Pickering-type stabilized nanoparticles by heterophase polymerization. Chem Soc Rev 42:6823–6839

    Article  CAS  PubMed  Google Scholar 

  94. Corona-Rivera MA, Ovando-Medina VM, Martinez-Gutierrez H, Silva-Aguilar FE, Perez E, Antonio-Carmona ID (2015) Morphology and conductivity tuning of polyaniline using short-chain alcohols by heterophase polymerization. Colloid Polym Sci 293:605–615

    Article  CAS  Google Scholar 

  95. Lenzi MK, Silva FM, Lima EL, Pinto JC (2003) Semibatch styrene suspension polymerization processes. J Appl Poly Sci 89:3021–3038

    Article  CAS  Google Scholar 

  96. Kotoulas C, Kiparissides C (2008) Suspension polymerization. In: Polymer reaction engineering, 209-232

  97. Bourgeat-Lami E (2007) Hybrid organic/inorganic particles. Hybrid materials: synthesis, characterization, and applications

  98. Chern CS (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31:443–486

    Article  CAS  Google Scholar 

  99. Odian G (2004) Principles of polymerization. Wiley, New York

    Book  Google Scholar 

  100. Lovell PA, El-Aasser MS (1997) Emulsion polymerization and emulsion polymers. Wiley, New York

    Google Scholar 

  101. Antonietti M, Landfester K (2002) Polyreactions in miniemulsions. Prog Polym Sci 27:689–757

    Article  CAS  Google Scholar 

  102. Asua JM (2002) Miniemulsion polymerization. Prog Polym Sci 27:1283–1346

    Article  CAS  Google Scholar 

  103. Puig JE, Mendizábal E, Lopez-Serrano F, Lopez RG (2012) Surfactant assisted polymerization methods. In: Encyclopedia of surface and colloids science

  104. Yan F, Xue G (1999) Synthesis and characterization of electrically conducting polyaniline in water–oil microemulsion. J Mater Chem 9:3035–3039

    Article  CAS  Google Scholar 

  105. Cao Y, Qiu J, Smith P (1995) Effect of solvents and co-solvents on the processibility of polyaniline: I. Solubility and conductivity studies. Synth Met 69(1–3):187

    Article  CAS  Google Scholar 

  106. Garrudo FF, Ferreira LV, Ferraria AM, do Rego Charas . André, . Morgado, AMBAVJ (2024) Pseudo-doping effect on structural and electrical properties of polyaniline-camphorsulfonic acid. Synth Met 301:117523

    Article  CAS  Google Scholar 

  107. Shacklette L, Han CC (1993) Solubility and dispersion characteristics of polyaniline. MRS Online Proc Librar (OPL) 328:157

    Article  Google Scholar 

  108. Angelopoulos M, Asturias GE, Ermer SP, Ray ASEM, Scherr EM, MacDiarmid AG, Epstein AJ (1988) Polyaniline: solutions, films and oxidation state. Mol Cryst Liq Cryst 160:151–163

    Google Scholar 

  109. Chandrakanthi N, Careem MA (2000) Thermal stability of polyaniline. Polym Bull 44:101–108

    Article  CAS  Google Scholar 

  110. Choi YK, Kim HJ, Kim SR, Cho YM, Ahn DJ (2017) Enhanced thermal stability of polyaniline with polymerizable dopants. Macromol 50:3164–3170

    Article  CAS  Google Scholar 

  111. Li W, Wan M (1999) Stability of polyaniline synthesized by a doping–dedoping–redoping method. J Appl Polym Sci 71:615–621

    Article  CAS  Google Scholar 

  112. Zhang Y, Zhao Y, Peng Z, Yao B, Alsaid Y, Hua M, He X (2021) Ultrastretchable polyaniline-based conductive organogel with high strain sensitivity. Mater Lett 3:1477–1483

    CAS  Google Scholar 

  113. Valentova H, Stejskal J (2010) Mechanical properties of polyaniline. Synth Met 160:832–834

    Article  CAS  Google Scholar 

  114. Wei Y, Jang GW, Hsueh KF, Scherr EM, MacDiarmid AG, Epstein AJ (1992) Thermal transitions and mechanical properties of films of chemically prepared polyaniline. Polymer 33:314–322

    Article  CAS  Google Scholar 

  115. Ryu KS, Kim KM, Park NG, Park YJ, Chang SH (2002) Symmetric redox supercapacitor with conducting polyaniline electrodes. J Power Sour 103:305–309

    Article  CAS  Google Scholar 

  116. Xing J, Liao M, Zhang C, Yin M, Li D, Song Y (2017) The effect of anions on the electrochemical properties of polyaniline for supercapacitors. Phys Chem Chem Phys 19:14030–14041

    Article  CAS  PubMed  Google Scholar 

  117. Ameen S, Akhtar MS, Kim YS, Yang OB, Shin HS (2010) Sulfamic acid-doped polyaniline nanofibers thin film-based counter electrode: application in dye-sensitized solar cells. J Phys Chem C 114:4760–4764

    Article  CAS  Google Scholar 

  118. Lenin R, Singh A, Bera C (2021) Effect of dopants and morphology on the electrical properties of polyaniline for various applications. J Mater Sci Mater Electron 32(20):24710–24725. https://doi.org/10.1007/s10854-021-06883-6

    Article  CAS  Google Scholar 

  119. Ingle RV, Shaikh SF, Bhujbal PK, Pathan HM, Tabhane VA (2020) Polyaniline doped with protonic acids: optical and morphological studies. ES Mater Manuf 8:54–59

    CAS  Google Scholar 

  120. Long Y, Chen Z, Shen J, Zhang Z, Zhang L, Xiao H, Duvail JL (2006) Magnetic properties of conducting polymer nanostructures. J Phys Chem B 110:23228–23233

    Article  CAS  PubMed  Google Scholar 

  121. Blinova NV, Sapurina I, Klimovic J, Stejskal J (2005) The chemical and colloidal stability of polyaniline dispersions. Polym Degrad Stab 88:428–434

    Article  CAS  Google Scholar 

  122. Alam J, Riaz U, Ahmad S (2009) High performance corrosion resistant polyaniline/alkyd ecofriendly coatings. Curr Appl Phys 9:80–86

    Article  Google Scholar 

  123. Sathiyanarayanan S, Azim SS, Venkatachari G (2006) Corrosion resistant properties of polyaniline–acrylic coating on magnesium alloy. Appl Surf Sci 253:2113–2117

    Article  CAS  Google Scholar 

  124. Babel V, Hiran BL (2021) A review on polyaniline composites: synthesis, characterization, and applications. Polym Compos 42(7):3142–3157

    Article  CAS  Google Scholar 

  125. Singh P, Shukla S (2020) Advances in polyaniline-based nanocomposites. J Mater Sci 55(4):1331–1365. https://doi.org/10.1007/s10853-019-04141-z

    Article  CAS  Google Scholar 

  126. Ciric-Marjanovic G (2013) Recent advances in polyaniline composites with metals, metalloids and non-metals. Synth Met 170:31–56

    Article  CAS  Google Scholar 

  127. Wu G, Li L, Li HJ, Xu BQ (2005) Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation. Carbon 43:2579–2587

    Article  CAS  Google Scholar 

  128. Sun H, Luo Y, Zhang Y, Li D, Yu Z, Li K, Meng Q (2010) In situ preparation of a flexible polyaniline/carbon composite counter electrode and its application in dye-sensitized solar cells. J Phys Chem C 114:11673–11679

    Article  CAS  Google Scholar 

  129. Li GC, Li GR, Ye SH, Gao XP (2012) A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater 2:1238–1245

    Article  CAS  Google Scholar 

  130. Zhao X, Kim JK, Ahn HJ, Cho KK, Ahn JH (2013) A ternary sulfur/polyaniline/carbon composite as cathode material for lithium sulfur batteries. Electrochim Acta 109:145–152

    Article  CAS  Google Scholar 

  131. Li H, Liang Y, Liu Y, Liu S, Li P, He C (2021) Engineering doping level for enhanced thermoelectric performance of carbon nanotubes/polyaniline composites. Compos Sci Technol 210:108797

    Article  CAS  Google Scholar 

  132. Li H, Liu Y, Li P, Liu S, Du F, He C (2021) Enhanced thermoelectric performance of carbon nanotubes/polyaniline composites by multiple interface engineering. ACS Appl Mater Interfaces 13:6650–6658

    Article  CAS  PubMed  Google Scholar 

  133. Ramamurthy PC, Malshe AM, Harrell WR, Gregory RV, McGuire K, Rao AM (2004) Polyaniline/single-walled carbon nanotube composite electronic devices. Sol State Electron 48:2019–2024

    Article  CAS  Google Scholar 

  134. Gupta V, Miura N (2006) Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochim Acta 52:1721–1726

    Article  CAS  Google Scholar 

  135. Gupta V, Miura N (2006) Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites. J Power Sour 157:616–620

    Article  CAS  Google Scholar 

  136. Heiba ZK, Mohamed MB, Imam NG, El-Naggar AM (2020) Optical and electrical properties of double-walled carbon nanotube/polyaniline composite. J Supercond Novel Magn 33:1439–1445

    Article  CAS  Google Scholar 

  137. Yakuphanoglu F, Şenkal BF (2008) Thermoelectrical and optical properties of double wall carbon nanotubes: polyaniline containing boron n-type organic semiconductors. Polym Adv Technol 19:905–908

    Article  CAS  Google Scholar 

  138. Mohajeri S, Dolati A, Yazdanbakhsh K (2019) Synthesis and characterization of a novel non-enzymatic glucose biosensor based on polyaniline/zinc oxide/multi-walled carbon nanotube ternary nanocomposite. J Electrochem Sci Eng 9:207–222

    Article  CAS  Google Scholar 

  139. Haritha T, Ramji K, Subrahmanyam C, Krushnamurthy K, Nagasree PS (2021) Microwave-absorption characteristics of polyaniline-coated multi-walled carbon nanotube composites. Plast Rubber Compos 50:180–188

    Article  CAS  Google Scholar 

  140. Awata R, Shehab M, El Tahan A, Soliman M, Ebrahim S (2020) High performance supercapacitor based on camphor sulfonic acid doped polyaniline/multiwall carbon nanotubes nanocomposite. Electrochim Acta 347:136229

    Article  CAS  Google Scholar 

  141. Wang CY, Mottaghitalab V, Too CO, Spinks GM, Wallace GG (2007) Polyaniline and polyaniline–carbon nanotube composite fibres as battery materials in ionic liquid electrolyte. J Power Sour 163:1105–1109

    Article  CAS  Google Scholar 

  142. Liao Y, Zhang C, Zhang Y, Strong V, Tang J, Li XG, Kaner RB (2011) Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors. Nano Lett 11:954–959

    Article  CAS  PubMed  Google Scholar 

  143. Liao Y, Li XG, Hoek EM, Kaner RB (2013) Carbon nanotube/polyaniline nanofiber ultrafiltration membranes. J Mater Chem A 1:15390–15396

    Article  CAS  Google Scholar 

  144. Lebedeva MV, Gribov EN (2020) Electrochemical behavior and structure evolution of polyaniline/carbon composites in ionic liquid electrolyte. J Sol State Electrochem 24:739–751

    Article  CAS  Google Scholar 

  145. ul Haq O, Choi JH, Lee YS (2020) Synthesis of ion-exchange polyaniline-carbon composite electrodes for capacitive deionization. Desalination 479:114308

    Article  CAS  Google Scholar 

  146. Bibi A, Shakoor A (2021) Charge transport mechanism in dodecylbenzenesulfonic acid doped polyaniline/carbon black composites. Polym Polym Compos 29:S1044–S1051

    CAS  Google Scholar 

  147. Ghatak S, Chakraborty G, Meikap AK, Woods T, Babu R, Blau WJ (2011) Synthesis and characterization of polyaniline/carbon nanotube composites. J Appl Polym Sci 119:1016–1025

    Article  CAS  Google Scholar 

  148. Zhang X, Ma J, Yan R, Cheng W, Zheng J, Jin B (2021) Pt-Ru/polyaniline/carbon nanotube composites with three-layer tubular structure for efficient methanol oxidation. J Alloys Compd 867:159017

    Article  CAS  Google Scholar 

  149. Ge J, Cheng G, Chen L (2011) Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale 3:3084–3088

    Article  CAS  PubMed  Google Scholar 

  150. Yin S, Lu W, Wu X, Luo Q, Wang E, Guo CY (2021) Enhancing thermoelectric performance of polyaniline/single-walled carbon nanotube composites via dimethyl sulfoxide-mediated electropolymerization. ACS Appl Mater Interfaces 13:3930–3936

    Article  CAS  PubMed  Google Scholar 

  151. Dhibar S, Bhattacharya P, Hatui G, Sahoo S, Das CK (2014) Transition metal-doped polyaniline/single-walled carbon nanotubes nanocomposites: efficient electrode material for high performance supercapacitors. ACS Sustain Chem Eng 2:1114–1127

    Article  CAS  Google Scholar 

  152. Das M, Pani TK, Sundaray B (2020) Electrical properties of solution cast films of polystyrene/polyaniline-multiwalled carbon nanotube nanocomposites. Compos Part C: Open Access 2:100025

    CAS  Google Scholar 

  153. Xavier PF, Benoy MD, Stephen SK, Varghese T (2021) Enhanced electrical properties of polyaniline carbon nanotube composites: analysis of temperature dependence of electrical conductivity using variable range hopping and fluctuation induced tunneling models. J Sol State Chem 300:122232

    Article  CAS  Google Scholar 

  154. Lee KS, Park CW, Phiri I, Ko JM (2020) New design for Polyaniline@ Multiwalled carbon nanotubes composites with bacteria doping for supercapacitor electrodes. Polymer 210:123014

    Article  CAS  Google Scholar 

  155. Kundu S, Majumder R, Ghosh R, Pradhan M, Roy S, Singha P, Pal Chowdhury M (2020) Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: Wearable and flexible human respiration monitoring application. J Mater Sci 55:3884–3901. https://doi.org/10.1007/s10853-019-04276-z

    Article  CAS  Google Scholar 

  156. Shao Y, Dong Y, Bin L, Fan L, Wang L, Yuan X, Zhao S (2021) Application of gold nanoparticles/polyaniline-multi-walled carbon nanotubes modified screen-printed carbon electrode for electrochemical sensing of zinc, lead, and copper. Microchem J 170:106726

    Article  CAS  Google Scholar 

  157. Simotwo SK, DelRe C, Kalra V (2016) Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline–carbon nanotube nanofibers. ACS Appl Mater Interfaces 8:21261–21269

    Article  CAS  PubMed  Google Scholar 

  158. Guo H, Li X, Wang Z, Wang J, Wang S (2018) Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field. Chin J Chem Eng 26:1213–1218

    Article  CAS  Google Scholar 

  159. Lin Z, Jia X, Li Y, Song H, Yang J (2021) Improved mechanical/tribological properties of polyimide/carbon fabric composites by in situ-grown polyaniline nanofibers. Mater Chem Phys 258:123972

    Article  CAS  Google Scholar 

  160. Bourdo S, Li Z, Biris AS, Watanabe F, Viswanathan T, Pavel I (2008) Structural, electrical, and thermal behavior of graphite-polyaniline composites with increased crystallinity. Adv Func Mater 18:432–440

    Article  CAS  Google Scholar 

  161. Xiang C, Li L, Jin S, Zhang B, Qian H, Tong G (2010) Expanded graphite/polyaniline electrical conducting composites: synthesis, conductive and dielectric properties. Mater Lett 64:1313–1315

    Article  CAS  Google Scholar 

  162. Ghanbari K, Mousavi MF, Shamsipur M, Karami H (2007) Synthesis of polyaniline/graphite composite as a cathode of Zn-polyaniline rechargeable battery. J Power Sour 170:513–519

    Article  CAS  Google Scholar 

  163. Liu Y, Zhao X (2021) The preparation and performance of a polyaniline/graphene composite coated fabric. J Text Inst 112:1258–1265

    Article  CAS  Google Scholar 

  164. Bourdo SE, Warford BA, Viswanathan T (2012) Electrical and thermal properties of graphite/polyaniline composites. J Sol State chem 196:309–313

    Article  CAS  Google Scholar 

  165. Chen K, Xiang C, Li L, Qian H, Xiao Q, Xu F (2012) A novel ternary composite: fabrication, performance and application of expanded graphite/polyaniline/CoFe 2 O 4 ferrite. J Mater Chem 22:6449–6455

    Article  CAS  Google Scholar 

  166. Ismail HK, Alesary HF, Mohammed MQ (2019) Synthesis and characterisation of polyaniline and/or MoO2/graphite composites from deep eutectic solvents via chemical polymerisation. J Polym Res 26:1–12

    Article  CAS  Google Scholar 

  167. Atiqah TN, Tan SJ, Foo KL, Supri AG, Al Bakri AMM, Liew YM (2018) Effect of graphite loading on properties of polyaniline/graphite composites. Polym Bull 75:209–220

    Article  CAS  Google Scholar 

  168. Sharma K, Pareek K, Rohan R, Kumar P (2019) Flexible supercapacitor based on three-dimensional cellulose/graphite/polyaniline composite. Int J Energy Res 43:604–611

    Article  CAS  Google Scholar 

  169. Sk AR, Shahadat M, Basu S, Shaikh ZA, Ali SW (2019) Polyaniline/carbon nanotube-graphite modified electrode sensor for detection of bisphenol A. Ionics 25:2857–2864

    Article  CAS  Google Scholar 

  170. Zhao X, Gnanaseelan M, Jehnichen D, Simon F (2019) Pionteck, Green and facile synthesis of polyaniline/tannic acid/rGO composites for supercapacitor purpose. J Mater Sci 54:10809–10824. https://doi.org/10.1007/s10853-019-03654-x

    Article  CAS  Google Scholar 

  171. Yang X, Qiu Y, Zhang M, Zhang L, Li H (2021) Facile fabrication of polyaniline/graphene composite fibers as electrodes for fiber-shaped supercapacitors. Appl Sci 11:8690

    Article  CAS  Google Scholar 

  172. Verma S, Mal DS, de Oliveira PR, Janegitz BC, Prakash J, Gupta RK (2022) A facile synthesis of novel polyaniline/graphene nanocomposite thin films for enzyme-free electrochemical sensing of hydrogen peroxide. Mol Syst Des Eng 7:158–170

    Article  CAS  Google Scholar 

  173. Pal R, Goyal SL, Rawal I, Gupta AK (2021) Efficient energy storage performance of electrochemical supercapacitors based on polyaniline/graphene nanocomposite electrodes. J Phys Chem Sol 154:110057

    Article  CAS  Google Scholar 

  174. Iqbal MZ, Faisal MM, Sulman M, Ali SR, Alzaid M (2020) Facile synthesis of strontium oxide/polyaniline/graphene composite for the high-performance supercapattery devices. J Electroanal Chem 879:114812

    Article  CAS  Google Scholar 

  175. Qiu Y, Jia X, Zhang M, Li H (2022) A new strategy for fabricating well-distributed polyaniline/graphene composite fibers toward flexible high-performance supercapacitors. Nanomaterials 12:3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kundu S, Majumder R, Bhagat BR, Roy S, Gayen R, Dashora A, Pal Chowdhury M (2023) An in situ synthesis of polyaniline/reduced graphene oxide nanocomposite flexible thin film on PET for the room temperature detection of trace level ammonia at ppb level. J Mater Sci 58(7):3147–3170. https://doi.org/10.1007/s10853-023-08219-7

    Article  CAS  Google Scholar 

  177. Oyetade JA, Machunda RL, Hilonga A (2023) Functional impacts of polyaniline in composite matrix of photocatalysts: an instrumental overview. RSC Adv 13(23):15467–15489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gilja V, Novaković K, Travas-Sejdic J, Hrnjak-Murgić Z, Kraljić Roković M, Žic M (2017) Stability and synergistic effect of polyaniline/TiO2 photocatalysts in degradation of azo dye in wastewater. Nanomaterials 7(12):412

    Article  PubMed  PubMed Central  Google Scholar 

  179. Chatterjee MJ, Ghosh A, Mondal A, Banerjee D (2017) Polyaniline–single walled carbon nanotube composite–a photocatalyst to degrade rose bengal and methyl orange dyes under visible-light illumination. RSC Adv 7(58):36403–36415

    Article  CAS  Google Scholar 

  180. Aamir M, Ashiq MN, Yasmeen G, Ahmad B, Ehsan MF, He T (2016) Synthesis and characterization of polyaniline/Zr-Co-substituted nickel ferrite (NiFe1. 2Zr0. 4Co0. 4O4) nanocomposites: their application for the photodegradation of methylene blue. Desalin Water Treat 57(26):12168–12177

    Article  CAS  Google Scholar 

  181. Nasresfahani S, Zargarpour Z, Sheikhi MH, Ana SN (2020) Improvement of the carbon monoxide gas sensing properties of polyaniline in the presence of gold nanoparticles at room temperature. Synth Met 265:116404

    Article  CAS  Google Scholar 

  182. Mondal P, Guo C, Yarger JL (2020) Water soluble gold-polyaniline nanocomposite: a substrate for surface enhanced Raman scattering and catalyst for dye degradation. Arab J Chem 13:4009–4018

    Article  CAS  Google Scholar 

  183. Najibzad AS, Amini R, Rostami M, Kardar P, Fedel M (2020) Active corrosion performance of magnesium by silane coatings reinforced with polyaniline/praseodymium. Prog Org Coat 140:105504

    Article  CAS  Google Scholar 

  184. Krishnaa GP, Navaneeth P, Ramachandran T, Babu TS, Suneesh PV (2020) Fabrication of polyaniline-platinum nanocomposite based flexible supercapacitor. Mater Today: Proc 33:2407–2413

    Google Scholar 

  185. Liu A, Bac LH, Kim JS, Kim BK, Kim JC (2013) Synthesis and characterization of conducting polyaniline-copper composites. J Nanosci Nanotechnol 13:7728–7733

    Article  CAS  PubMed  Google Scholar 

  186. Olad A, Barati M, Shirmohammadi H (2011) Conductivity and anticorrosion performance of polyaniline/zinc composites: investigation of zinc particle size and distribution effect. Prog Org Coat 72:599–604

    Article  CAS  Google Scholar 

  187. Sezer A, Gurudas U, Collins B, Mckinlay A, Bubb DM (2009) Nonlinear optical properties of conducting polyaniline and polyaniline–Ag composite thin films. Chem Phys Lett 477:164–168

    Article  CAS  Google Scholar 

  188. Roussel F, King RCY, Kuriakose M, Depriester M, Hadj-Sahraoui A, Gors C, Brun JF (2015) Electrical and thermal transport properties of polyaniline/silver composites and their use as thermoelectric materials. Synth Met 199:196–204

    Article  CAS  Google Scholar 

  189. Chaudhary V (2021) High performance X-band electromagnetic shields based on methyl-orange assisted polyaniline-silver core-shell nanocomposites. Polym Plast Technol Mater 60:1547–1556

    CAS  Google Scholar 

  190. Hu Q, Zhou J, Qiu B, Wang Q, Song G, Guo Z (2021) Synergistically improved methane production from anaerobic wastewater treatment by iron/polyaniline composite. Adv Compos Hybrid Mater 4:265–273

    Article  Google Scholar 

  191. Srivastava S, Kumar S, Vijay YK (2012) Preparation and characterization of tantalum/polyaniline composite based chemiresistor type sensor for hydrogen gas sensing application. Int J Hydrogen Energy 37:3825–3832

    Article  CAS  Google Scholar 

  192. Ozkazanc E, Zor S, Ozkazanc H (2012) Synthesis, characterization, and AC conductivity of polyaniline/selenium composites. J Macromol Sci, Part B 51:2122–2132

    Article  CAS  Google Scholar 

  193. Yan R, Jin B, Li D, Zheng J, Li Y, Qian C (2018) One-step electrochemically co-deposited Pt nanoparticles/polyaniline composites with raspberry structures for methanol electro-oxidation. Synth Met 235:110–114

    Article  CAS  Google Scholar 

  194. Usman M, Adnan M, Ahsan MT, Javed S, Butt MS, Akram MA (2021) In situ synthesis of a polyaniline/Fe–Ni codoped Co3O4 composite for the electrode material of supercapacitors with improved cyclic stability. ACS Omega 6:1190–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Pippara RK, Chauhan PS, Yadav A, Kishnani V, Gupta A (2021) Room temperature hydrogen sensing with polyaniline/SnO2/Pd nanocomposites. Micro Nano Eng 12:100086

    Article  CAS  Google Scholar 

  196. Zhang T, Zhang J, Zou D, Cheng F, Su R (2020) Desalin a promising Pd/polyaniline/foam nickel composite electrode for effectively electrocatalytic degradation of methyl orange in wastewater. Water Treat 189:386–394

    Article  CAS  Google Scholar 

  197. Maruthapandi M, Saravanan A, Luong JHT, Gedanken A (2020) Antimicrobial properties of the polyaniline composites against Pseudomonas aeruginosa and Klebsiella pneumonia. J Funct Biomater 11:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Chakraborty P, Chien YA, Chiu WT, Chang TFM, Sone M, Nakamoto T, Janata J (2020) Design and development of amperometric gas sensor with atomic Au–polyaniline/Pt composite. IEEE Sens J 20:12479–12487

    Article  CAS  Google Scholar 

  199. Sun J, Wang L, Yang Q, Shen Y, Zhang X (2020) Preparation of copper-cobalt-nickel ferrite/graphene oxide/polyaniline composite and its applications in microwave absorption coating. Prog Org Coat 141:105552

    Article  CAS  Google Scholar 

  200. Ashokkumar SP, Vijeth H, Yesappa L, Niranjana M, Vandana M, Devendrappa H (2020) Electrochemically synthesized polyaniline/copper oxide nano composites: To study optical band gap and electrochemical performance for energy storage devices. Inorg Chem Commun 115:107865

    Article  CAS  Google Scholar 

  201. Kim JN, Dong YZ, Choi HJ (2020) Pickering emulsion polymerized polyaniline/zinc-ferrite composite particles and their dual electrorheological and magnetorheological responses. ACS Omega 5:7675–7682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Pant HC, Patra MK, Negi SC, Bhatia A, Vadera SR, Kumar N (2006) Studies on conductivity and dielectric properties of polyaniline-zinc sulphide composites. Bull Mater Sci 29:379–384

    Article  CAS  Google Scholar 

  203. Wang F, Min SX (2007) TiO2/polyaniline composites: an efficient photocatalyst for the degradation of methylene blue under natural light. Chin Chem Lett 18:1273–1277

    Article  Google Scholar 

  204. Deng X, Chen Y, Wen J, Xu Y, Zhu J, Bian Z (2020) Polyaniline-TiO2 composite photocatalysts for light-driven hexavalent chromium ions reduction. Sci Bull 65:105–112

    Article  CAS  Google Scholar 

  205. Hu ZA, Xie YL, Wang YX, Mo LP, Yang YY, Zhang ZY (2009) Polyaniline/SnO2 nanocomposite for supercapacitor applications. Mater Chem Phys 114:990–995

    Article  CAS  Google Scholar 

  206. Luo Z, Zhu Y, Liu E, Hu T, Li Z, Liu T, Song L (2014) Synthesis of polyaniline/SnO2 nanocomposite and its improved electrochemical performance. Mater Res Bull 60:105–110

    Article  CAS  Google Scholar 

  207. Ghoreishi KB, Ghasemi M, Rahimnejad M, Yarmo MA, Daud WRW, Asim N, Ismail M (2014) Development and application of vanadium oxide/polyaniline composite as a novel cathode catalyst in microbial fuel cell. Int J Energy Res 38:70–77

    Article  CAS  Google Scholar 

  208. Shukla SK, Vamakshi M, Bharadavaja A, Shekhar A, Tiwari A (2012) Fabrication of electro-chemical humidity sensor based on zinc oxide/polyaniline nanocomposites. Adv Mater Lett 3:421–425

    Article  Google Scholar 

  209. Mohsen RM, Morsi SM, Selim MM, Ghoneim AM, El-Sherif HM (2019) Electrical, thermal, morphological, and antibacterial studies of synthesized polyaniline/zinc oxide nanocomposites. Polym Bull 76:1–21

    Article  CAS  Google Scholar 

  210. Pethkar S, Patil RC, Kher JA, Vijayamohanan K (1999) Deposition and characterization of CdS nanoparticle/polyaniline composite films. Thin Solid Films 349:105–109

    Article  CAS  Google Scholar 

  211. Sharma S, Singh S, Khare N (2016) Synthesis of polyaniline/CdS (nanoflowers and nanorods) nanocomposites: a comparative study towards enhanced photocatalytic activity for degradation of organic dye. Colloid Polym Sci 294:917–926

    Article  CAS  Google Scholar 

  212. Kitagawa S (2014) Metal–organic frameworks (MOFs). Chem Soc Rev 43:5415–5418

    Article  PubMed  Google Scholar 

  213. Zheng S, Li X, Yan B, Hu Q, Xu Y, Xiao X, Pang H (2017) Transition-metal (Fe Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater 7:1602733

    Article  Google Scholar 

  214. Yao M, Zhao X, Zhang Q, Zhang Y, Wang Y (2021) Polyaniline nanowires aligned on MOFs-derived nanoporous carbon as high-performance electrodes for supercapacitor. Electrochim Acta 390:138804

    Article  CAS  Google Scholar 

  215. Wang M, Ma Y, Ye J (2020) Controllable layer-by-layer assembly of metal-organic frameworks/polyaniline membranes for flexible solid-state microsupercapacitors. J Power Sour 474:228681

    Article  CAS  Google Scholar 

  216. Liu PY, Zhao JJ, Dong ZP, Liu ZL, Wang YQ (2021) Interwoving polyaniline and a metal-organic framework grown in situ for enhanced supercapacitor behaviour. J Alloys Compd 854:157181

    Article  CAS  Google Scholar 

  217. Srinivasan R, Elaiyappillai E, Nixon EJ, Lydia IS, Johnson PM (2020) Enhanced electrochemical behaviour of Co-MOF/PANI composite electrode for supercapacitors. Inorg Chim Acta 502:119393

    Article  CAS  Google Scholar 

  218. Zhang X, Li D, Dong C, Shi J, Xu Y (2019) synergistic supercapacitive performance of Mo-MOF/PANI and its electrochemical impedance spectroscopy investigation. Mater Today Commun 21:100711

    Article  CAS  Google Scholar 

  219. Gundugar K, Semerci F (2022) Compositing of MIL-101 (Fe) with reduced graphene oxide and polyaniline for capacitive energy storage. Mater Chem Phys 278:125641

    Article  CAS  Google Scholar 

  220. Neisi Z, Ansari-Asl Z, Dezfuli AS (2019) Polyaniline/Cu (II) metal-organic frameworks composite for high performance supercapacitor electrode. J Inorg Organomet Polym Mater 29:1838–1847

    Article  CAS  Google Scholar 

  221. Gong J, Xu Z, Tang Z, Zhong J, Zhang L (2019) Highly compressible 3-D hierarchical porous carbon nanotube/metal organic framework/polyaniline hybrid sponges supercapacitors. AIP Adv 9:055032

    Article  Google Scholar 

  222. Udayan APM, Sadak O, Gunasekaran S (2020) Metal–organic framework/polyaniline nanocomposites for lightweight energy storage. ACS Appl Energy Mater 3:12368–12377

    Article  CAS  Google Scholar 

  223. Gupta A, Bhardwaj SK, Sharma AL, Kim KH, Deep A (2019) Development of an advanced electrochemical biosensing platform for E. coli using hybrid metal-organic framework/polyaniline composite. Environ Res 171:395–402

    Article  CAS  PubMed  Google Scholar 

  224. Chen DD, Yi XH, Zhao C, Fu H, Wang P, Wang CC (2020) Polyaniline modified MIL-100 (Fe) for enhanced photocatalytic Cr (VI) reduction and tetracycline degradation under white light. Chemosphere 245:125659

    Article  CAS  PubMed  Google Scholar 

  225. Bhardwaj SK, Mohanta GC, Sharma AL, Kim KH, Deep A (2018) A three-phase copper MOF-graphene-polyaniline composite for effective sensing of ammonia. Anal Chim Acta 1043:89–97

    Article  CAS  PubMed  Google Scholar 

  226. Ma S, Hou Y, Xiao Y, Chu F, Cai T, Hu W, Hu Y (2020) Metal-organic framework@ polyaniline nanoarchitecture for improved fire safety and mechanical performance of epoxy resin. Mater Chem Phys 247:122875

    Article  CAS  Google Scholar 

  227. Peng Y, Wei X, Wang Y, Li W, Zhang S, Jin J (2022) Metal–organic framework composite photothermal membrane for removal of high-concentration volatile organic compounds from water via molecular sieving. ACS Nano 16:8329–8337

    Article  CAS  PubMed  Google Scholar 

  228. Gil-Castell O, Ontoria-Oviedo I, Badia JD, Amaro-Prellezo E, Sepúlveda P, Ribes-Greus A (2022) Conductive polycaprolactone/gelatin/polyaniline nanofibres as functional scaffolds for cardiac tissue regeneration. React Funct Polym 170:105064

    Article  CAS  Google Scholar 

  229. Ostrovidov S, Ebrahimi M, Bae H, Nguyen HK, Salehi S, Kim SB, Khademhosseini A (2017) Gelatin–polyaniline composite nanofibers enhanced excitation–contraction coupling system maturation in myotubes. ACS Appl Mater Interfaces 9:42444–42458

    Article  CAS  PubMed  Google Scholar 

  230. Wu Y, Chen YX, Yan J, Quinn D, Dong P, Sawyer SW, Soman P (2016) Fabrication of conductive gelatin methacrylate–polyaniline hydrogels. Acta Biomater 33:122–130

    Article  CAS  PubMed  Google Scholar 

  231. Gareev KG, Bagrets VS, Golubkov VA, Ivanitsa MG, Khmelnitskiy IK, Luchinin VV, Testov DO (2020) Synthesis and characterization of polyaniline-based composites for electromagnetic compatibility of electronic devices. Electronics 9:734

    Article  CAS  Google Scholar 

  232. Lee HJ, Chung TJ, Kwon HJ, Kim HJ, Tze WTY (2012) Fabrication and evaluation of bacterial cellulose-polyaniline composites by interfacial polymerization. Cellulose 19:1251–1258

    Article  CAS  Google Scholar 

  233. Kong P, Feng H, Chen N, Lu Y, Li S, Wang P (2019) Polyaniline/chitosan as a corrosion inhibitor for mild steel in acidic medium. RSC Adv 9:9211–9217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Rathore BS, Chauhan NPS, Rawal MK, Ameta SC, Ameta R (2020) Chitosan–polyaniline–copper (II) oxide hybrid composite for the removal of methyl orange dye. Polym Bull 77:4833–4850

    Article  CAS  Google Scholar 

  235. Farshi Azhar F, Olad A, Salehi R (2014) Fabrication and characterization of chitosan–gelatin/nanohydroxyapatite–polyaniline composite with potential application in tissue engineering scaffolds. Des Monom Polym 17:654–667

    Article  CAS  Google Scholar 

  236. Yavuz AG, Uygun A, Bhethanabotla VR (2009) Substituted polyaniline/chitosan composites: Synthesis and characterization. Polymers 75:448–453

    CAS  Google Scholar 

  237. Vaghela C, Kulkarni M, Karve M, Aiyer R, Haram S (2014) Agarose–guar gum assisted synthesis of processable polyaniline composite: morphology and electro-responsive characteristics. RSC Adv 4:59716–59725

    Article  CAS  Google Scholar 

  238. Saikia JP, Banerjee S, Konwar BK, Kumar A (2010) Biocompatible novel starch/polyaniline composites: characterization, anti-cytotoxicity and antioxidant activity. Colloids Surf, B 81:158–164

    Article  CAS  Google Scholar 

  239. Cai J-J (2010) Nano-silicon/polyaniline composite for lithium storage. Electrochem Commun 12:1572–1575

    Article  CAS  Google Scholar 

  240. Soumya CC, George KE, Narayanankutty SK (2021) Electrochemical studies on corrosion resistance of coatings based on polyaniline and silica gel. Adv Mater Res 1167:13–22

    Article  Google Scholar 

  241. Huanca DR (2021) Macroporous silicon/polyaniline Schottky contacts: fabrication and electrical characterization in air and liquid solution. Mater Chem Phys 271:124920

    Article  CAS  Google Scholar 

  242. Roman RL, Nagi L, Silva LL, Fernandes SC, de Mello JMM, Magro JD, Fiori MA (2020) Monocrystalline silicon/polyaniline/horseradish peroxidase enzyme electrode obtained by the electrodeposition method for the electrochemical detection of glyphosate. Mater Electron 31:9443–9456

    Article  CAS  Google Scholar 

  243. Salehi MH, Golbaten-Mofrad H, Jafari SH, Goodarzi V, Entezari M, Hashemi M, Zamanlui S (2021) Electrically conductive biocompatible composite aerogel based on nanofibrillated template of bacterial cellulose/polyaniline/nano-clay. Int J Biol Macromol 173:467–480

    Article  CAS  PubMed  Google Scholar 

  244. Rahman SU, Rose P, Krewer U, Bilal S, Farooq S (2021) Exploring the functional properties of sodium phytate doped polyaniline nanofibers modified FTO electrodes for high-performance binder free symmetric supercapacitors. Polymers 13:2329

    Article  Google Scholar 

  245. Para ML, Versaci D, Amici J, Caballero MF, Cozzarin MV, Francia C, Gamba M (2021) Synthesis and characterization of montmorillonite/polyaniline composites and its usage to modify a commercial separator. J Electroanal Chem 880:114876

    Article  CAS  Google Scholar 

  246. Feng M, Tian J, Xie H, Kang Y, Shan Z (2015) Nano-silicon/polyaniline composites with an enhanced reversible capacity as anode materials for lithium ion batteries. J Solid State Electrochem 19:1773–1782

    Article  CAS  Google Scholar 

  247. Sun Y, Zheng J, Yang Y, Zhao J, Rong J, Li H, Niu L (2021) Design advanced porous polyaniline-PEDOT: PSS composite as high performance cathode for sodium ion batteries. Compos Commun 24:100674

    Article  Google Scholar 

  248. Yi L, Liu L, Guo G, Chen X, Zhang Y, Yu S, Wang X (2017) Expanded graphite@ SnO2@ polyaniline composite with enhanced performance as anode materials for lithium ion batteries. Electrochim Acta 240:63–71

    Article  CAS  Google Scholar 

  249. Jia S, Wang Q, Wang Sumin (2021) Ni-MOF/PANI-derived CN-doped NiO nanocomposites for high sensitive nonenzymic electrochemical detection. J Inorg Organomet Polym Mater 31(2):865–874

    Article  CAS  Google Scholar 

  250. Parangusan H, Bhadra J, Ahmad Z, Mallick S, Touati F, Al-Thani N (2021) Humidity sensor based on poly (lactic acid)/PANI–ZnO composite electrospun fibers. RSC Adv 11:28735–28743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Wong PY, Phang SW, Baharum A (2020) Effects of synthesised polyaniline (PAni) contents on the anti-static properties of PAni-based polylactic acid (PLA) films. RSC Adv 10:39693–39699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Soto-Oviedo MA, Araujo OA, Faez R, Rezende MC, De Paoli MA (2006) Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synth Met 156:1249–1255

    Article  CAS  Google Scholar 

  253. Chang CH, Huang TC, Peng CW, Yeh TC, Lu HI, Huang WI, Yeh JM (2012) Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 50(14):5044–5051

    Article  CAS  Google Scholar 

  254. Zhang Q, Sun Y, Xu W, Zhu D (2014) Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 26(40):6829–6851

    Article  CAS  PubMed  Google Scholar 

  255. Liu S, Li H, Li P, Liu Y, He C (2021) Recent advances in polyaniline-based thermoelectric composites. CCS Chem 3(10):2547–2560

    Article  CAS  Google Scholar 

  256. Zhang C, Li H, Liu Y, Li P, Liu S, He C (2022) Advancement of polyaniline/carbon nanotubes based thermoelectric composites. Materials 15(23):8644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Wang Q, Yao Q, Chang J, Chen L (2012) Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. J Mater Chem 22(34):17612–17618

    Article  CAS  Google Scholar 

  258. Tain K, Hu D, Wei Q, Fu Q, Deng H (2023) Recent progress on multifunctional electromagnetic interference shielding polymer composites. J Mater Sci Technol 134:106–131

    Article  Google Scholar 

  259. Wang C, Lan Y, Yu W, Li X, Qian Y, Liu H (2016) Preparation of amino-functionalized graphene oxide/polyimide composite films with improved mechanical, thermal and hydrophobic properties. Appl Surf Sci 362:11–19

    Article  CAS  Google Scholar 

  260. Poothanari MA, Abraham J, Kalarikkal N, Thomas S (2018) Excellent electromagnetic interference shielding and high electrical conductivity of compatibilized polycarbonate/polypropylene carbon nanotube blend nanocomposites. Ind Eng Chem Res 57(12):4287–4297

    Article  CAS  Google Scholar 

  261. Wang Y, Jing X (2005) Intrinsically conducting polymers for electromagnetic interference shielding. Polym Adv Technol 16(4):344–351

    Article  CAS  Google Scholar 

  262. Kumar A, Jangir LK, Kumari Y, Kumar M, Kumar V, Awasthi K (2015) Optical and structural study of polyaniline/polystyrene composite films. Macromol Symp 357(1):229–234

    Article  CAS  Google Scholar 

  263. Saini P (2015) Fundamentals of conjugated polymer blends, copolymers and composites: synthesis, properties, and applications. Wiley, Hoboken, NJ

    Book  Google Scholar 

  264. Kumar A, Kumar V, Awasthi K (2018) Polyaniline–carbon nanotube composites: preparation methods, properties, and applications. Polym-Plast Technol Eng 57(2):70–97

    Article  CAS  Google Scholar 

  265. Lee CY, Song HG, Jang KS, Oh EJ, Epstein AJ, Joo NJ (1999) Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synth Met 102(1–3):1346–1349

    Article  CAS  Google Scholar 

  266. Wu Y, Wang Z, Liu X, Shen X, Zheng Q, Xue Q, Kim JK (2017) Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces 9(10):9059–9069

    Article  CAS  PubMed  Google Scholar 

  267. Li N, Huang Y, Du F, He X, Lin X, Gao H, Eklund HPC (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6(6):1141–1145

    Article  CAS  PubMed  Google Scholar 

  268. Zeng Z, Chen M, Jin H, Li W, Xue X, Zhou L, Zhang Z (2016) Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96:768–777

    Article  CAS  Google Scholar 

  269. Li Y, Shen B, Pei X, Zhang Y, Yi D, Zhai W, Zheng W (2016) Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 100:375–385

    Article  CAS  Google Scholar 

  270. Cao MS, Song WL, Hou ZL, Wen B, Yuan J (2010) The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3):788–796

    Article  CAS  Google Scholar 

  271. Cheng K, Li H, Zhu M, Qui H, Yang J (2020) In situ polymerization of graphene-polyaniline@ polyimide composite films with high EMI shielding and electrical properties. RSC Adv 10(4):2368–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Li H, Lu X, Yuan D, Sun J, Erden F, Wang F, He C (2017) Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding properties. J Mater Chem C 5(34):8694–8698

    Article  CAS  Google Scholar 

  273. Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477

    Article  CAS  PubMed  Google Scholar 

  274. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816

    Article  Google Scholar 

  275. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes–a review. J Materiomics 2:37–54

    Article  Google Scholar 

  276. Yao F, Pham DT, Lee YH (2015) Carbon-based materials for lithium-ion batteries, electrochemical capacitors, and their hybrid devices. Chemsuschem 8:2284–2311

    Article  CAS  PubMed  Google Scholar 

  277. Pal K, Panwar V, Bag S, Kim JK (2015) Graphene oxide–polyaniline–polypyrrole nanocomposite for a supercapacitor electrode. RSC Adv 5:3005–3010

    Article  CAS  Google Scholar 

  278. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang JG, wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220

    Article  CAS  Google Scholar 

  279. Chauhan NPS, Mozafari M, Chundawat NS, Meghwal K, Ameta R, Ameta SC (2016) High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities. J Ind Eng Chem 36:13–29

    Article  CAS  Google Scholar 

  280. Wang R, Han M, Zhao Q, Ren Z, Guo X, Xu C (2017) Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci Rep 7:44562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Güryel S, Walker M, Geerlings P (2017) Molecular dynamics simulations of the structure and the morphology of graphene/polymer nanocomposites. Phys Chem Chem Phys 19:12959–12969

    Article  PubMed  Google Scholar 

  282. Güryel S, Alonso M, Hajgató B (2017) A computational study on the role of noncovalent interactions in the stability of polymer/graphene nanocomposites. J Mol Model 23:1–14

    Article  Google Scholar 

  283. Li Y, Huang X, Zeng L, Li R, Tian H, Fu X, Zhong WH (2019) A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J Mater Sci 54:1036–1076. https://doi.org/10.1007/s10853-018-3006-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have written and contributed to the review article and approved the submitted version.

Corresponding author

Correspondence to Navdeep Sharma.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Singh, A., Kumar, N. et al. A review on polyaniline and its composites: from synthesis to properties and progressive applications. J Mater Sci 59, 6206–6244 (2024). https://doi.org/10.1007/s10853-024-09562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09562-z

Navigation