Skip to main content
Log in

Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nanocomposite polymer electrolytes (NCPE) composed of poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) and chitin for different concentrations of LiClO4 have been prepared by a hot-press technique. The prepared NCPE films were subjected to XRD, SEM, FTIR and tensile analyses. The thermal stability of NCPE membrane was investigated by TG-DTA. Ionic conductivity studies have also been made as a function of lithium salt concentration for different temperatures ranging from 0 to 80 °C. The polymeric membrane comprising PVDF-HFP/chitin/LiClO4 of ratio 75:20:5 (wt.%) offered maximum ionic conductivity. Thermal study reveals that these membranes are stable up to 260 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gray FM (1997) Polymer electrolytes, RSC materials monographs. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42

    Article  Google Scholar 

  3. McCallum JR, Vincent CA (1987) Polymer electrolytes reviews—I. Elsevier, London

    Google Scholar 

  4. Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964

    Article  CAS  Google Scholar 

  5. Gray FM (1991) Solid polymer electrolytes-fundamentals and technological applications. VCH, New York

    Google Scholar 

  6. Scrosati B (1993) Applications of electroactive polymers. Chapman Hall, London

    Google Scholar 

  7. Armand MB, Chabagno JM, Duclot M (1979) In: Vashista P, Mundy JN, Shenoy GK (eds) Fast ion transport in solids. Elsevier, Amsterdam, p 131

    Google Scholar 

  8. Gorecki W, Andreani R, Bertheir C, Malli M, Roose J (1986) NMR, DSC, and conductivity study of a poly(ethylene oxide) complex electrolyte:PEO(LiClO4)x. Solid State Ionics 18–19:295–299

    Article  Google Scholar 

  9. Kelly IE, Owen JR, Steele BCH (1985) Poly(ethylene oxide) electrolytes for operation at near room temperature. J Power Sources 14:13–21

    Article  CAS  Google Scholar 

  10. Moulin JF, Damman P, Dosiere M (1999) Formation and structure of the epoxy-silica hybrids. Polymer 40:171–181

    Article  Google Scholar 

  11. Gray FM, McCollum JR, Vincent CA (1986) Poly(ethylene oxide)-LiCF3SO3-polystyrene electrolyte systems. Solid State Ionics 18–19:282–286

    Article  Google Scholar 

  12. Weston JE, Steele BCH (1982) Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ionics 7:75–79

    Article  CAS  Google Scholar 

  13. Bronstein LM, Karlinsey RL, Ritter K, Joo CG, Stein B, Zw JW (2004) Design of organic-inorganic solid polymer electrolytes: synthesis, structure and properties. J Mater Chem 14:1812–1820

    Article  CAS  Google Scholar 

  14. Croce F, Appetecchi GB, Perci L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    Article  CAS  Google Scholar 

  15. Appetecchi GB, Croce F, Perci L, Ronci F, Scrosati B (2000) Investigation on the stability of the lithium-polymer electrolyte interface. J Electrochem Soc 147:4448–4452

    Article  CAS  Google Scholar 

  16. Itoh T, Miyamura Y, Iohikawa Y, Uno T, Kubo M, Yamamoto O (2003) Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranced polymer. J Power Sources 119–121:403–408

    Article  Google Scholar 

  17. Wieczorek W (1992) Temperature dependence of conductivity of mixed-phase composite polymer solid electrolytes. Mater Sci Eng B 15:108–114

    Article  Google Scholar 

  18. Skaarup S, West K, Christiansen BZ (1980) Mixed phase solid electrolytes. Solid State Ionics 28–30:375–380

    Google Scholar 

  19. Capuoano F, Croce F, Scrosati B (1991) Composite polymer electrolytes. J Electrochem Soc 138:1918–1922

    Article  Google Scholar 

  20. Kumar B, Scanlon LG (1994) Polymer-ceramic composite electrolytes. J Power Sources 52:261–268

    Article  CAS  Google Scholar 

  21. Song JY, Wang H (1999) Review on gel electrolytes. J Power Sources 77:135–146

    Article  Google Scholar 

  22. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  23. Shin JH, Alessandrini F, Passerini S (2005) Comparison of solvent-cast and hot-pressed P (EO) 20 LiN (SO2CF2CF3)2 polymer electrolytes containg nanosized SiO2. J Electrochem Soc 152:A283–A288

    Article  CAS  Google Scholar 

  24. Appetecchi GB, Hassoun J, Scrosati B, Croce F, Cassel F, Salomon M (2003) Hot-pressed, solvent free, nanocomposite, PEO-based electrolyte membranes: II All solid state Li/LiFePO4 polymer batteries. J Power Sources 124:246–253

    Article  CAS  Google Scholar 

  25. Abbernt S, Plestil J, Hlavata D, Lindgren J, Tegenfeldt J, Wendsjo A (2001) Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42:1407–1416

    Article  Google Scholar 

  26. Saikia D, Kumar A (2004) Ionic conduction in P(VdF-HFP)/PVdF-(PC + DEC)-LiClO4 polymer electrolytes. Electrochim Acta 49:2581–2589

    Article  CAS  Google Scholar 

  27. Wieczorek W, Steven JR, Florjanczyk Z (1996) Composite polyether based electrolytes. The Lewis acid-base approach. Solid State Ionics 85:67–72

    Article  CAS  Google Scholar 

  28. Stephan AM, Kumar TP, Nathan MAK, Angulakshmi N (2009) Chitin-incorporated poly(ethylene oxide)-based nanocomposite electrolytes for lithium batteries. J Phys Chem B 113(7):1963–1971

    Article  CAS  Google Scholar 

  29. Shodai T, Owens BB, Ostsuka M, Yamaki J (1994) Thermal stability of the polymer electrolyte (PEO)8-LiCF3SO3. J Electrochem Soc 141:2978–2981

    Article  CAS  Google Scholar 

  30. Ribeiro R, Silva GG, Mohallen NDS (2001) A comparison of ionic conductivity, thermal behaviour and morphology in two polyether-LiI-LiAl5O8 composite polymer electrolytes. Electrochim Acta 46:1679–1686

    Article  CAS  Google Scholar 

  31. Fan LZ, Maier J (2006) Composite effects in poly(ethylene oxide)-succinonitrile based all-solid electrolytes. Electrochem Commun 8:1753–1756

    Article  CAS  Google Scholar 

  32. Chu PP, Reddy MJ, Kao HM (2003) Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li. Solid State Ionics 156:141–153

    Article  CAS  Google Scholar 

  33. Chiang CY, Chu PP, Reddy MJ (2004) Nano-tube TiO2 composite PVdF/LiPF6 solid membranes. Solid State Ionics 175:631–635

    Article  CAS  Google Scholar 

  34. Robitailla CD, Fauteeaux D (1986) Phase diagrams and conductivity characterization of some PEO-LiX Electrolytes. J Electrochem Soc 133:315–325

    Article  Google Scholar 

  35. Capuglia C, Mustarelli P, Quartarone E, Tomasi C, Magistris A (1999) Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ionics 118:73–79

    Article  Google Scholar 

  36. Scrosati B, Croce F, Perci L, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46:2457–2461

    Article  Google Scholar 

  37. Rajendran S, Mahendran O, Kannan R (2002) Lithium-ion conduction in plasticized PMMA-PVdF polymer blend electrolytes. Mater Chem Phys 74:52–57

    Article  CAS  Google Scholar 

  38. Pearson FG, Marchessault RH, Liang CY (1960) Infrared spectra of crystalline polysaccharides. V. Chitin. J Polym Sci 43:101–116

    Article  Google Scholar 

  39. Focher B, Naggi A, Torri G, Cosari A, Terbjerich M (1992) Structural differences between chitin polymorphs and their precipitates from solutions-evidence from CP-Mas, 13C-NMR, FTIR and FT-Raman spectroscopy. Carbohydr Polym 17:97–102

    Article  CAS  Google Scholar 

  40. Huang B, Wang Z, Chen L, Zue R, Wang F (1996) The mechanism of lithium ion transport in polyacrylonitrile-based polymer electrolytes. Solid State Ionics 91:279–284

    Article  CAS  Google Scholar 

  41. Chusid O, Gofer O, Aurbach D, Wattanable D, Momma M, Osaka T (2001) Studies of the interface between lithium electrodes and polymeric electrolyte systems using in situ FTIR spectroscopy. J Power Sources 97–98:632–636

    Article  Google Scholar 

  42. Schechter A, Aurbach D (1999) X-ray photoelectron spectroscopy study of surface films formed on Li-electrodes freshly prepared in alkyl carbonate solution. Langmuir 15:3334–3342

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Manuel Stephan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angulakshmi, N., Thomas, S., Nahm, K.S. et al. Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries. Ionics 17, 407–414 (2011). https://doi.org/10.1007/s11581-010-0517-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-010-0517-z

Keywords

Navigation