Skip to main content

Advertisement

Log in

A Realistic Host-Vector Transmission Model for Describing Malaria Prevalence Pattern

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Malaria continues to be a major public health concern all over the world even after effective control policies have been employed, and considerable understanding of the disease biology have been attained, from both the experimental and modelling perspective. Interactions between different general and local processes, such as dependence on age and immunity of the human host, variations of temperature and rainfall in tropical and sub-tropical areas, and continued presence of asymptomatic infections, regulate the host-vector interactions, and are responsible for the continuing disease prevalence pattern.

In this paper, a general mathematical model of malaria transmission is developed considering short and long-term age-dependent immunity of human host and its interaction with pathogen-infected mosquito vector. The model is studied analytically and numerically to understand the role of different parameters related to mosquitoes and humans. To validate the model with a disease prevalence pattern in a particular region, real epidemiological data from the north-eastern part of India was used, and the effect of seasonal variation in mosquito density was modelled based on local climactic data. The model developed based on general features of host-vector interactions, and modified simply incorporating local environmental factors with minimal changes, can successfully explain the disease transmission process in the region. This provides a general approach toward modelling malaria that can be adapted to control future outbreaks of malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albonico, M., Chwaya, H. M., Montresor, A., Stolzfus, R. J., Tielsch, J. M., Alawi, K. S., & Savioli, L. (1997). Parasitic infections in Pemba Island school children. East Afr. Med. J., 74, 294–298.

    Google Scholar 

  • Alves, F. P., Durlacher, R. R., Menezes, M. J., Krieger, H., Silva, L. H., & Camargo, E. P. (2002). High prevalence of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in native Amazonian populations. Am. J. Trop. Med. Hyg., 66(6), 641–648.

    Google Scholar 

  • Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans: dynamics and control. London: Oxford University Press.

    Google Scholar 

  • Aron, J. L. (1983). Dynamics of acquired immunity boosted by exposure to infection. Math. Biosci., 64, 249–259.

    Article  MATH  Google Scholar 

  • Aron, J. L. (1988). Mathematical modeling of immunity to malaria. Math. Biosci., 90, 385–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Aron, J. L., & May, R. M. (1982). The population dynamics of malaria. In R. M. Anderson (Ed.), Population dynamics of infectious disease (pp. 139–179). London: Chapman and Hall.

    Chapter  Google Scholar 

  • Bacaër, N. (2007). Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population. Bull. Math. Biol., 69, 1067–1091.

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër, N., & Ait Dada, E. H. (2012). On the biological interpretation of a definition for the parameter R0 in periodic population models. J. Math. Biol., 65, 601–621.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharjee, S., Sharma, C., Dhiman, R. C., & Mitra, A. P. (2006). Climate change and malaria in India. Curr. Sci., 90, 369–375.

    Google Scholar 

  • Briet, O. J. (2002). A simple method for calculating mosquito mortality rates, correcting for seasonal variations in recruitment. Med. Vet. Entomol., 16, 22–27.

    Article  Google Scholar 

  • Cairns, M., Ghani, A., Okell, L., Gosling, R., Carneiro, I., Anto, F., Asoala, V., Owusu-Agyei, S., Greenwood, B., Chandramohan, D., & Milligan, P. (2011). Modelling the protective efficacy of alternative delivery schedules for intermittent preventive treatment of malaria in infants and children. PLoS ONE, 6, e18947.

    Article  Google Scholar 

  • Census of India (2001). Age structure of population distribution. http://censusindia.gov.in/Census_And_You/age_structure_and_marital_status.aspx.

  • Chatterjee, C., & Sarkar, R. R. (2009). Multi-step polynomial regression method to model and forecast malaria incidence. PLoS ONE, 4, e4726.

    Article  Google Scholar 

  • Chitnis, N., Cushing, J. M., & Hyman, J. M. (2006). Bifurcation analysis of a mathematical model for malaria transmission. SIAM J. Appl. Math., 67, 24–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Dev, V., Phookan, S., Sharma, V. P., & Anand, S. P. (2004). Physiographic and entomologic risk factors of malaria in Assam, India. Am. J. Trop. Med. Hyg., 71(4), 451–456.

    Google Scholar 

  • Dev, V., Sangma, B. M., & Dash, A. P. (2010). Persistent transmission of malaria in Garo hills of Meghalaya bordering Bangladesh, north-east India. Malar. J., 9, 263. doi:10.1186/1475-2875-9-263.

    Article  Google Scholar 

  • Diaz, H., Ramirez, A. A., Olarte, A., & Clavijo, C. (2011). A model for the control of malaria using genetically modified vectors. J. Theor. Biol., 276, 57–66.

    Article  MathSciNet  Google Scholar 

  • Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases. J. Math. Biol., 35, 503–522.

    MathSciNet  MATH  Google Scholar 

  • Dietz, K. (1993). The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res., 2, 23–41.

    Article  Google Scholar 

  • Dietz, K., Molineaux, L., & Thomas, A. (1974). A malaria model tested in the African savannah. Bull. World Health Organ., 50, 347–357.

    Google Scholar 

  • Doolan, D. L., Dobaño, C., & Baird, J. K. (2009). Acquired immunity to malaria. Clin. Microbiol. Rev., 22(1), 13–36.

    Article  Google Scholar 

  • Drakeley, C. J., Akim, N. I. J., Sauerwein, R. W., Greenwood, B. M., & Targett, G. A. T. (2000). Estimates of the infectious reservoir of Plasmodium falciparum malaria in the Gambia and in Tanzania. Trans. R. Soc. Trop. Med. Hyg., 94, 472–476.

    Article  Google Scholar 

  • Drakeley, C. J., Carneiro, I., Reyburn, H., Malima, R., Lusingu, J. P. A., et al. (2005). Altitude-dependent and -independent variations in Plasmodium falciparum prevalence in northeastern Tanzania. J. Infect. Dis., 191, 1589–1598.

    Article  Google Scholar 

  • Drakeley, C. J., Sutherland, C., Bouserna, J. T., Sauerwein, R. W., & Targett, G. A. T. (2006). The epidemiology of Plasmodium falciparum gametocytes: weapons of mass dispersion. Trends Parasitol., 22, 424–430.

    Article  Google Scholar 

  • Elderkin, R. H., Berkowitz, D. P., Farris, F. A., Gunn, C. F., Hickernell, F. J., Kass, S. N., Mansfield, F. I., & Taranto, R. G. (1977). On the steady state of an age dependent model for malaria. In V. Lakshmikantham (Ed.), Nonlinear systems and applications (pp. 491–512). New York: Academic.

    Google Scholar 

  • Ermert, V., Fink, A. H., Jones, A. E., & Morse, A. P. (2011). Development of a new version of the Liverpool malaria model, I: refining the parameter settings and mathematical formulation of basic processes based on a literature review. Malar. J., 10, 35. doi:10.1186/1475-2875-10-35.

    Article  Google Scholar 

  • Filipe, J. A. N., Riley, E. M., Darkeley, C. J., Sutherland, C. J., & Ghani, A. C. (2007). Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission model. PLoS Comput. Biol., 3(12), 2569–2579.

    Article  MathSciNet  Google Scholar 

  • Ghani, Z. C., Sutherland, C. J., Riley, E. M., Drakeley, C. J., Griffin, J. T., Gosling, R. D., & Filipe, J. A. N. (2009). Loss of population levels of immunity to malaria as a result of exposure-reducing interventions: consequences for interpretation of disease trends. PLoS ONE, 2, e4383.

    Article  Google Scholar 

  • Griffin, J. T., Hollingsworth, T. D., Okell, L. C., Churcher, T. S., White, M., et al. (2010). Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med., 7(8), e1000324. doi:10.1371/journal.pmed.1000324.

    Article  Google Scholar 

  • Gu, W. D., Mbogo, C. M., Githure, J. I., Regens, J. L., Killeen, G. F., et al. (2003). Low recovery rates stabilize malaria endemicity in areas of low transmission in coastal Kenya. Acta Trop., 86, 71–81.

    Article  Google Scholar 

  • Gurarie, D., Karl, S., Zimmerman, P. A., King, C. H., St. Pierre, T. G, et al. (2012). Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities. PLoS ONE, 7(3), e34040. doi:10.1371/journal.pone.0034040.

    Article  Google Scholar 

  • Hay, S. I., Rogers, D. J., Toomer, J. F., & Snow, R. W. (2000). Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, Internet access and review. Trans. R. Soc. Trop. Med. Hyg., 94, 113–127.

    Article  Google Scholar 

  • Hay, S. I., Guerra, C., Tatem, A., Noor, A., & Snow, R. (2004). The global distribution and population at risk of malaria: past, present and future. Lancet Infect. Dis., 4, 327–336.

    Article  Google Scholar 

  • Heesterbeek, J. A. P., & Dietz, K. (1996). The concept of R0 in epidemic theory. Stat. Neerl., 50(1), 89–110.

    Article  MathSciNet  MATH  Google Scholar 

  • Heffernan, J. M., Smith, R. J., & Wahl, M. (2005). Perspectives on the basic reproductive ratio. J. R. Soc. Interface, 2(4), 281–293. doi:10.1098/rsif.2005.0042.

    Article  Google Scholar 

  • Hogh, B., Thompson, R., Hetzel, C., Fleck, S. L., Kruse, N. A., Jones, I., Dgedge, M., Barreto, J., & Sinden, R. E. (1995). Specifc and nonspecifc responses to Plasmodium falciparum blood-stage parasites and observations on the gametocytemia in schoolchildren living in a malaria-endemic area of Mozambique. Am. J. Trop. Med. Hyg., 52, 50–59.

    Google Scholar 

  • Hoshen, M. B., & Morse, A. P. (2004). A weather-driven model of malaria transmission. Malar. J., 3, 32. doi:10.1186/1475-2875-3-32.

    Article  Google Scholar 

  • Kelly-Hope, L. A., & McKenzie, F. E. (2009). The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa. Malar. J., 8, 268. doi:10.1186/1475-2875-8-268.

    Article  Google Scholar 

  • Killeen, G. F., Chitnis, N., Moore, S. J., & Okumu, F. O. (2011). Target product profile choices for intra-domiciliary malaria vector control pesticide products: repel or kill? Malar. J., 10, 207. doi:10.1186/1475-2875-10-207.

    Article  Google Scholar 

  • Koella, J. C. (1991). On the use of mathematical models of malaria transmission. Acta Trop., 49, 1–25.

    Article  Google Scholar 

  • Li, J., Welch, R. M., Nair, U. S., Sever, T. L., Irwin, D. E., Cordon-Rosales, C., & Padilla, N. (2002). Dynamic malaria models with environmental changes. In Proceedings of the thirty-fourth southeastern symposium on system theory (pp. 396–400). Huntsville: AL.

    Google Scholar 

  • Macdonald, G. (1950). The analysis of infection rates in diseases in which superinfections occur. Trop. Dis. Bull., 47, 907–915.

    Google Scholar 

  • Macdonald, G. (1956). Epidemiological basis of malaria control. Bull. World Health Organ., 15, 613–626.

    Google Scholar 

  • Malaria Site. http://www.malariasite.com/malaria/MalariaInMangalore.htm.

  • Mandal, S., Sarkar, R. R., & Sinha, S. (2011). Mathematical models of malaria: a review. Malar. J., 10, 202. doi:10.1186/1475-2875-10-202.

    Article  Google Scholar 

  • Martens, W. J. M., Niessen, L. W., Rotmans, J., Jetten, T. H., & McMichael, A. J. (1995). Potential impact of global climate change on malaria risk. Environ. Health Perspect., 103, 458–464.

    Article  Google Scholar 

  • McKenzie, F. E. (2000). Why model malaria? Parasitol. Today, 16(12), 511–516.

    Article  Google Scholar 

  • Mert, A., Ozaras, R., Tabak, F., Bilir, M., Ozturk, R., & Aktuglu, Y. (2003). Malaria in Turkey: a review of 33 cases. Eur. J. Epidemiol., 18, 579–582.

    Article  Google Scholar 

  • Molineaux, L., & Gramiccia, G. (1980). The Garki project. Geneva: World Health Organization.

    Google Scholar 

  • Nah, K., Kim, Y., & Lee, J. M. (2010). The dilution effect of the domestic animal population on the transmission of P. vivax malaria. J. Theor. Biol., 266, 299–306.

    Article  MathSciNet  Google Scholar 

  • Ngwa, G. A., & Shu, W. S. (2000). A mathematical model for endemic malaria with variable human and mosquito populations. Math. Comput. Model., 32, 747–763.

    Article  MathSciNet  MATH  Google Scholar 

  • Okell, L. C., Drakeley, C. J., Bousema, T., Whitty, C. J. M., & Ghani, A. C. (2008). Modelling the impact of artemisinin combination therapy and long-acting treatments on malaria transmission intensity. PLoS Med., 5(11), e226. doi:10.1371/journal.pmed.0050226.

    Article  Google Scholar 

  • Pampana, E. (1969). A textbook of malaria eradication. London: Oxford University Press.

    Google Scholar 

  • Parham, P. E., & Michael, E. (2010). Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect., 118, 620–626. doi:10.1289/ehp.0901256.

    Article  Google Scholar 

  • Rafikov, M., Bevilacqua, L., & Wyse, A. P. P. (2009). Optimal control strategy of malaria vector using genetically modified mosquitoes. J. Theor. Biol., 258, 418–425.

    Article  MathSciNet  Google Scholar 

  • Reiner, R. C., Perkins, T. A., Barker, C. M., Niu, T., Chaves, L. F., et al. (2013). A systematic review of mathematical models of mosquito-borne pathogen transmission. J. R. Soc. Interface, 10, 20120921.

    Article  Google Scholar 

  • Ross, R. (1911). The prevention of malaria. London: Murray.

    Google Scholar 

  • Ross, R. (1915). Some a priori pathometric equations. Br. Med. J., 1, 546–547.

    Article  Google Scholar 

  • Roy, S. B., Sarkar, R. R., & Sinha, S. (2011). Theoretical investigation of malaria prevalence in two indian cities using the response surface method. Malar. J., 10, 301. doi:10.1186/1475-2875-10-301.

    Article  Google Scholar 

  • Russell, P. F., West, L. S., Manwell, R. D., & MacDonald, G. (1963). Practical malariology. London: Oxford University Press.

    Google Scholar 

  • Sabatinelli, G., Majori, G., D’Ancona, F., & Romi, R. (1994). Malaria epidemiological trends in Italy. Eur. J. Epidemiol., 10, 399–403.

    Article  Google Scholar 

  • Segel, L. A. (1980). Mathematical models in molecular and cellular biology. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Sharma, V. P., & Bos, R. (2003). Determinants of malaria in South-Asia. In E. Casman & H. Dowlatabadi (Eds.), The contextual determinants of malaria. Washington: Resources for the Future.

    Google Scholar 

  • Smith, D. L., Battle, K. E., Hay, S. I., Barker, C. M., Scott, T. W., & McKenzie, F. E. (2012). Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog., 8(4), e1002588. doi:10.1371/journal.ppat.1002588.

    Article  Google Scholar 

  • Tanser, F. C., Sharp, B., & le Sueur, D. (2003). Potential effect of climate change of malaria transmission in Africa. Lancet, 362, 1792–1798.

    Article  Google Scholar 

  • Trape, J. F., Rogier, C., Konate, L., Diagne, N., Bouganali, H., Canque, B., Legros, F., Badji, A., Ndiaye, G., Ndiaye, P., Brahimi, K., Faye, O., Druilhe, P., & Da-Silva, L. P. (1994). The Dielmo project: a longitudinal study of natural malaria infection and the mechanisms of protective immunity in a community living in a holoendemic area of Senegal. Am. J. Trop. Med. Hyg., 51, 123–137.

    Google Scholar 

  • Vinetz, J. M., & Gilman, R. H. (2002). Asymptomatic Plasmodium parasitemia and the ecology of malaria transmission. Am. J. Trop. Med. Hyg., 66(6), 639–640.

    Google Scholar 

  • World Health Organization (WHO) and WHO global malaria programme. Available http://www.who.int/topics/malaria/en/ and http://www.who.int/malaria/aboutus.html.

  • Yang, H. M. (2000). Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector). Rev. Saude Publica, 34, 223–231.

    Article  Google Scholar 

  • Yé, Y., Hoshen, M., Kyobutungi, C., Louis, V. R., & Sauerborn, R. (2009). Local scale prediction of Plasmodium falciparum malaria transmission in an endemic region using temperature and rainfall. Glob. Health Action, 2, 13. doi:10.3402/gha.v2i0.1923.

    Google Scholar 

Download references

Acknowledgement

We thank Department of Science and Technology, Government of India, for the financial support (SR/SO/AS-25/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Rup Sarkar.

Appendices

Appendix A: Immunity Functions

The parameters ρ and η, which depend on the level of immunity of the host, have been incorporated in the model (7a)–(7g) through immunity functions. The details mathematical formulation is described in the following text.

In the proposed model (7a)–(7g), human immunity is considered to act in two ways: (i) reduces the probability (η) of clinical disease and (ii) regulate the rate of removal of parasites (ρ). The immunity, responsible for the first kind of work is called Clinical immunity (C(a,t)) and the immunity, which is responsible for clearance of parasite is called Parasite immunity (P(a,t)).

Clinical Immunity

Every people born with some level of immunity called maternal immunity (C m ), which decays exponentially with a half life d m but simultaneously accumulates some immunity (C f ), which is determined by the force of infection and this also decays exponentially with mean life d e . Therefore, clinical immunity can be written as

$$C (a, t) = C_{m} (a, t) + C_{f} (a, t) $$

where C m and C f can be found by solving the following set of equations:

$$\begin{aligned} \frac{\partial C_{m}}{\partial a} + \frac{\partial C_{m}}{\partial t} =& - \frac{C_{m}}{d_{m}} \\ \frac{\partial C_{f}}{\partial a} + \frac{\partial C_{f}}{\partial t} =& \sigma I_{m} - \frac{C_{f}}{d_{e}} \end{aligned}$$

At the time of birth, maternal immunity (C m ) is assumed to be half of the total clinical immunity at the age of 25 years (Drakeley et al. 2006) and C f is zero. The response of the clinical immunity η is assumed to vary by the following way:

$$\eta = \frac{1}{1 + ( \frac{C(a,t)}{H_{s}} )^{2}} $$

Parasite Immunity

This immunity is responsible for clearance of parasite and develops/matures relatively in latter age of life through a delay phase (J A ). The immunity level in delay phase (J A ) accumulates through force of infection (σI m ), matures in parasite immunity (P(a,t)) at a rate (1/d l ), and decays exponentially with mean life d A . Parasite immunity can be obtained by solving the following set of equations:

$$\begin{aligned} \frac{\partial J_{A}}{\partial a} + \frac{\partial J_{A}}{\partial t} =& \sigma I_{m} - \frac{J_{A}}{d_{l}} \\ \frac{\partial P}{\partial a} + \frac{\partial P}{\partial t} =& \frac{J_{A}}{d_{l}} - \frac{P}{d_{A}} \end{aligned}$$

At the time of birth, J A =P=0.

The recovery rate from the disease (ρ) is assumed to be a saturating increasing function of the immunity level P(a,t):

$$\rho = r + \rho_{0} \biggl[ 1 + (w_{A} - 1) \frac{ ( P / H_{A} )^{2}}{1 + ( P / H_{A} )^{2}} \biggr] $$

where ρ 0 and r are the age dependent and age independent baseline recovery rate, respectively; w A denotes maximum amplification of baseline recovery rate; H A is the level of parasite immunity at half saturation.

Appendix B: Existence of Endemic Equilibrium Point

The proof for existence of endemic equilibrium points of the model is presented below.

Proof

The equilibrium point E of system (7a)–(7g) can be expressed in terms of \(S_{m}^{*}\) as shown in expressions (9a9f). It can be shown easily that the existence (positivity) and uniqueness of the equilibrium point E holds if \(S_{m}^{*}\) is positive and ∈[0,1). Condition for \(S_{m}^{*}\ \in [0, 1)\) We have the expression for \(S_{m}^{*}\) in Eq. (10) as

$$A S_{m}^{*^{2}} + B S_{m}^{*} + C = 0 $$

From the expression for A, B, and C, it is clear that for all set of real parameter values, A<0, B>0, and C<0. Also, the expression for (A+B+C) can be written in terms of basic reproduction number R 0 as

$$A + B + C = (R_{0} - 1) (\gamma + \mu_{h}) (\rho + \mu_{h}) (R_{S} + \mu_{h})\mu_{m} $$

Now we can observe the following situations, which determine the existence and uniqueness of the equilibrium point E :

  1. (i)

    For R 0<1, both the roots of \(S_{m}^{*}\) will lie between 0 and 1 if the following conditions hold true:

    $$\biggl \vert \frac{C}{A} \biggr \vert < 1\quad \mathrm{and}\quad C (A + B + C) > 0 $$

    But for R 0<1, the second condition does not hold i.e. \(\vert \frac{C}{A} \vert \ > 1\).

Therefore, for R 0<1, only one equilibrium point exist which is disease free.

  1. (ii)

    If R 0=1, then A+B+C=0.

    In this case roots are \(S_{m}^{*} = 1\) and \(S_{m}^{*} = \frac{C}{A}\).

    The second root exists if and only if, \(\vert \frac{C}{A} \vert \le 1\).

But this condition does not hold true, hence only one equilibrium point \(S_{m}^{*} = 1\) exists, which indicates again a disease free state.

  1. (iii)

    For R 0>1, we have C (A+B+C)<0; this implies one and only one root lies between 0 and 1, which is the endemic equilibrium point E .

Hence, for R 0>1, there exists one and only one endemic equilibrium point E , and this proves the lemma.

Hence the Lemma 3.3 can be proved following the above-mentioned conditions.

Appendix C: Coefficients of the Characteristic Equation (18)

The expressions of C 1, C 2, C 3, and C 4 of the characteristic equation (18) are as follows:

$$\begin{aligned} C_{1} =& \gamma + \rho + R_{S} + 3 \mu_{h} + \mu_{m} \\ C_{2} =& (\gamma + \mu_{h}) (\rho + \mu_{h}) + (R_{S} + \mu_{h}) (\gamma + \rho + 2 \mu_{h}) + \mu_{m} (\gamma + \rho + R_{S} + 3 \mu_{h}) \\ C_{3} =& (\gamma + \mu_{h}) (\rho + \mu_{h}) (R_{S} + \mu_{h}) + \bigl[(\gamma + \mu_{h}) ( \rho + \mu_{h}) \\ &{} + (R_{S} + \mu_{h}) (\gamma + \rho + 2 \mu_{h}) \bigr]\mu_{m} - \alpha \sigma \bigl[\gamma (1 - \eta ) C_{IA} + \gamma \eta C_{IS} \bigr] \\ =& \biggl(1 - \frac{\mu_{m}}{\mu_{h}}R_{0}\biggr) (\gamma + \mu_{h}) (\rho + \mu_{h}) (R_{S} + \mu_{h}) + \bigl[(\gamma + \mu_{h}) (\rho + \mu_{h}) \\ &{} + (R_{S} + \mu_{h}) (\gamma + \rho + 2 \mu_{h})\bigr]\mu_{m} + \frac{\alpha \gamma \sigma}{\mu_{h}}\bigl[ \bigl(1 - \eta^{2}\bigr) C_{IA}R_{S} + \eta C_{IS}\rho \bigr] \\ C_{4} =& (\gamma + \mu_{h}) (\rho + \mu_{h}) (R_{S} + \mu_{h})\mu_{m} - \alpha \gamma \sigma \bigl[\eta C_{IS}(\rho + \mu_{h}) \\ &{} + (1 - \eta ) C_{IA}\bigl\{ (1 + \eta )R_{S} + \mu_{h}\bigr\} \bigr] \\ =& (1 - R_{0}) (\gamma + \mu_{h}) (\rho + \mu_{h}) (R_{S} + \mu_{h})\mu_{m} \end{aligned}$$

Appendix D: Proof of Theorem 3.4

For τ=0, the system (7a)–(7g) is stable around the disease free equilibrium point if all the roots of the characteristic Eq. (18) are negative, and unstable if at least one root is positive.

Three of the seven roots of Eq. (18) can be easily found as −μ h , −μ m and −μ m which are always negative and to know the sign of other four roots we apply Descarte’s rule of sign.

For all real positive parameter values C 1 and C 2>0

  1. (i)

    If R 0>1 then C 4<0⇒ Irrespective to the sign of C 3, the system (7a)–(7g) is unstable around the disease free equilibrium point.

  2. (ii)

    If R 0<1 then C 4>0. In this case the stability of the system (7a)–(7g) around the disease free equilibrium point depends on the sign of C 3. If C 3>0, the system (7a)–(7g) is stable around the disease free equilibrium point and it is unstable if C 3<0. The condition for C 3>0 is as follows:

    $$ \sigma < \frac{(\gamma + \mu_{h})(\rho + \mu_{h})(R_{S} + \mu_{h}) + [(\gamma + \mu_{h})(\rho + \mu_{h}) + (R_{S} + \mu_{h})(\gamma + \rho + 2\mu_{h})]\mu_{m}}{\alpha \gamma [(1 - \eta )C_{IA} + \eta C_{IS}]} $$
  3. (iii)

    If R 0<(μ h /μ m ), then C 3>0 and, as the human mortality rate μ h is less than mosquito mortality rate μ m (i.e. μ h /μ m <1), therefore, C 4>0 and, therefore, all the eigenvalues are negative and the system (7a)–(7g) is stable around the disease free equilibrium point.

  4. (iv)

    If R 0=1, then C 3<0, (as μ m /μ h >1). Therefore, all roots of the characteristic equation (18) are not negative. So, for R 0=1 the system (7a)–(7g) will not be stable.

Hence, the theorem holds true.

Appendix E: Proof of Theorem 3.5

For τ=0, the system (7a)–(7g) is stable around the endemic equilibrium point if all the roots of the characteristic equation (14) are negative, and is unstable if at least one root is positive. Two roots of the characteristic equation (14) are −μ m , −μ m <0, and to find the other roots for τ=0 we rewrite the equation in the following form:

$$\begin{aligned} &\lambda^{5} + (A_{1} + A) \lambda^{4} + \bigl(A_{2} + A A_{1} + \alpha \sigma S_{m}^{*}B_{1} \bigr) \lambda^{3} \\ &\quad{} + \bigl\{ A_{3} + A A_{2} + \alpha \sigma S_{m}^{*}(B_{2} + B_{1} \mu_{h})\bigr\} \lambda^{2} \\ &\quad{}+ \bigl\{ A_{4} + A A_{3} + \alpha \sigma S_{m}^{*}(B_{3} + B_{2} \mu_{h})\bigr\} \lambda + \bigl(A A_{4} + \alpha \sigma S_{m}^{*}B_{3} \mu_{h}\bigr) = 0 \end{aligned}$$
(E.1)

where \(A = \alpha (C_{IA}I_{hA}^{*} + C_{IS}I_{hS}^{*}) + \mu_{m} > 0\) and the expressions for A 1, A 2, A 3, A 4 and B 1, B 2, B 3 are given in (17a17g). For all real parameter values A 1, A 2, A 3, and A 4>0. By the Routh–Hurwitz criterion (Segel 1980), the polynomial (E.1) has roots with negative real part if all the coefficients of the polynomial are positive, i.e.

  1. (i)

    (A 1+A)>0

  2. (ii)

    \((A_{2} + A A_{1} + \alpha \sigma S_{m}^{*}B_{1}) > 0\)

  3. (iii)

    \(\{ A_{3} + A A_{2} + \alpha \sigma S_{m}^{*}(B_{2} + B_{1} \mu_{h})\} > 0\)

  4. (iv)

    \(\{ A_{4} + A A_{3} + \alpha \sigma S_{m}^{*}(B_{3} + B_{2} \mu_{h})\} > 0\)

  5. (v)

    \((A A_{4} + \alpha \sigma S_{m}^{*}B_{3} \mu_{h}) > 0\)

As A 1 and A both are positive, therefore, (i) is always true. Other conditions hold true if the parameters satisfy the condition (19a) and (19b), where the expressions for X 1, Y 1, X 2, and Y 2 are as follows:

$$\begin{aligned} X_{1} =& I^{*}_{{m}^{2}}\gamma \sigma^{2}\eta + I^{*}_{m}\gamma \sigma \eta \rho + I^{*}_{m} \gamma \sigma R_{S} + I^{*}_{{m}^{2}}\sigma^{2} \eta^{2}R_{S} + \gamma \rho R_{S} + I^{*}_{m}\sigma \rho R_{S} \\ &{}+ 2I^{*}_{m}\gamma \sigma (1 + \eta )\mu_{h} + 2I^{*2}_{m}\sigma^{2}\eta \mu_{h} + 2 \gamma \rho \mu_{h} + 2I^{*}_{m}\sigma \rho \mu_{h} + 2\rho R_{S}\mu_{h} \\ &{}+ 2I^{*}_{m}\sigma \bigl(1 + \eta^{2} \bigr)R_{S}\mu_{h} + 2\rho R_{S}\mu_{h} + 3\gamma \mu_{h}^{2} + 3I^{*}_{m}\sigma \rho (1 + \eta )\mu_{h}^{2} + 3\rho \mu_{h}^{2} \\ &{}+ 3R_{S}\mu_{h}^{2} + 4\mu_{h}^{3} + \alpha I^{*}_{hS}C_{IS}\bigl[I^{*}_{m} \sigma \bigl\{ \gamma (1 + \eta ) + I^{*}_{m}\sigma \eta \bigr \}\\ &{}+ \bigl\{ \gamma + I^{*}_{m}\sigma \bigl(1 + \eta^{2}\bigr)\bigr\} R_{S} + 3\bigl\{ \gamma + I^{*}_{m}\sigma (1 + \eta ) + R_{S}\bigr\} \mu_{h} + 6\mu_{h}^{2}\\ &{} + \rho \bigl\{ \gamma + I^{*}_{m}\sigma + R_{S} + 3 \mu_{h}\bigr\} \bigr] + \alpha C_{IA}\bigl[I^{*}_{m}\gamma I^{*}_{hA}\sigma \\ &{}+ \sigma \bigl\{ \gamma S^{*}_{m}S_{h}^{*} + \gamma \bigl(I^{*}_{m} + S^{*}_{m} \bigr)I^{*}_{hA} + I^{*}_{m} \bigl(I^{*}_{m} + S^{*}_{m} \bigr)I^{*}_{hA}\sigma \bigr\} \eta \\ &{}+ I^{*}_{hA}\bigl\{ \bigl\{ \gamma + I^{*}_{m}\sigma + \bigl(I^{*}_{m} + S^{*}_{m}\bigr)\sigma \eta^{2}\bigr\} R_{S}\\ &{} + 3\bigl\{ \gamma + I^{*}_{m}\sigma + \bigl(I^{*}_{m} + S^{*}_{m}\bigr)\sigma \eta + R_{S}\bigr\} \mu_{h} \\ &{} + 6\mu_{h}^{2} + \rho \bigl(\gamma + I^{*}_{m}\sigma + R_{S} + 3\mu_{h}\bigr) \bigr\} \bigr] + \bigl[I^{*}_{m}\sigma \bigl\{ \gamma (1 + \eta ) + I^{*}_{m}\sigma \eta \bigr\} \\ &{} + \bigl\{ \gamma + I^{*}_{m}\sigma \bigl(1 + \eta^{2}\bigr)\bigr\} R_{S} + 3\bigl\{ \gamma + I^{*}_{m}\sigma (1 + \eta ) + R_{S}\bigr\} \mu_{h} + 6\mu_{h}^{2} \\ &{} + \rho \bigl\{ \gamma + I^{*}_{m}\sigma + R_{S} + 3\mu_{h}\bigr\} \bigr]{\mu_{m}} \end{aligned}$$
$$\begin{aligned} Y_{1} =& I^{*}_{m}\gamma \sigma (1 + \eta ) + I^{*2}_{m}\sigma^{2}\eta + 3\bigl\{ \gamma + I^{*}_{m}\sigma (1 + \eta )\bigr\} \mu_{h} + 6 \mu_{h}^{2} \\ &{} + \bigl\{ \gamma + I^{*}_{m}\sigma \bigl(1 + \eta^{2}\bigr) + 3\mu_{h}\bigr\} R_{S} + \rho \bigl( \gamma + I^{*}_{m}\sigma + R_{S} + 3 \mu_{h}\bigr) \\ &{} + \bigl\{ \gamma + I^{*}_{m}\sigma (1 + \eta ) + \rho + R_{S} + 4\mu_{h}\bigr\} \bigl(\alpha I^{*}_{hA}C_{IA} + \alpha I^{*}_{hS}C_{IS} + \mu_{m}\bigr) \end{aligned}$$
$$\begin{aligned} X_{2} =& \alpha I^{*}_{hS}C_{IS} \bigl[I^{*}_{m}\sigma \bigl\{ I^{*}_{m} \gamma \sigma \eta + \bigl(\gamma + I^{*}_{m}\sigma \eta^{2}\bigr)R_{S}\bigr\} + 2\bigl\{ I^{*}_{m} \sigma \bigl(\gamma + \gamma \eta + I^{*}_{m}\sigma \eta \bigr) \\ &{} + \bigl(\gamma + I^{*}_{m}\sigma \bigl(1 + \eta^{2}\bigr)\bigr)R_{S}\bigr\} \mu_{h} + 3\bigl\{ \gamma + I^{*}_{m}\sigma (1 + \eta ) + R_{S}\bigr\} \mu_{h}^{2} + 4\mu_{h}^{3} \\ &{} + \rho \bigl\{ I^{*}_{m}\gamma \sigma \eta + \bigl( \gamma + I^{*}_{m}\sigma \bigr)R_{S} + 2\bigl(\gamma + I^{*}_{m}\sigma + R_{S}\bigr)\mu_{h} + 3\mu_{h}^{2}\bigr\} \bigr] \\ &{} + \alpha C_{IA}\bigl[\sigma \bigl\{ I^{*}_{m} \gamma \bigl(I^{*}_{m} + S^{*}_{m} \bigr)I^{*}_{hA}\sigma \eta + \bigl(I^{*}_{m} \gamma I^{*}_{hA} + \bigl(\gamma S^{*}_{m} \bigl(S^{*}_{h} + I^{*}_{hA}\bigr) \\ &{}+ I^{*}_{m}\bigl(I^{*}_{m} + S^{*}_{m}\bigr)I^{*}_{hA}\sigma \bigr) \eta^{2}\bigr)R_{S}\bigr\} + 2\bigl\{ I^{*}_{m} \gamma I^{*}_{hA}\sigma + \sigma \bigl(\gamma S^{*}_{m}S^{*}_{h} + \gamma \bigl(I^{*}_{m} + S^{*}_{m} \bigr)I^{*}_{hA} \\ &{} + I^{*}_{m}\bigl(I^{*}_{m} + S^{*}_{m}\bigr)I^{*}_{hA}\sigma \bigr) \eta + I^{*}_{hA}\bigl(\gamma + S^{*}_{m} \sigma + \bigl(I^{*}_{m} + S^{*}_{m}\bigr) \sigma \eta^{2}\bigr)R_{S}\bigr\} \mu_{h} \\ &{}+ 3I^{*}_{hA}\bigl\{ \gamma + S^{*}_{m} \sigma + \bigl(I^{*}_{m} + S^{*}_{m}\bigr) \sigma \eta + R_{S}\bigr\} \mu_{h}^{2} + 4I^{*}_{hA}\mu_{h}^{3} \\ &{} + I^{*}_{hA}\rho \bigl\{ I^{*}_{m} \gamma \sigma \eta + \bigl(\gamma + I^{*}_{m}\sigma \bigr)R_{S} + 2\bigl(\gamma + I^{*}_{m}\sigma + R_{S}\bigr)\mu_{h} + 3\mu_{h}^{2}\bigr\} \bigr] \\ &{} + \mu_{h}\bigl[\bigl(I^{*}_{m}\gamma + \mu_{h}\bigr)\bigl\{ (\gamma + \mu_{h}) \bigl(I^{*}_{m} \sigma \eta + \mu_{h}\bigr) + R_{S}\bigl(\gamma + I^{*}_{m}\sigma \eta^{2} + \mu_{h}\bigr) \bigr\} \\ &{} + \rho \bigl\{ I^{*}_{m}\gamma \sigma \eta + \bigl( \gamma + I^{*}_{m}\sigma + \mu_{h}\bigr) (R_{S} + \mu_{h}\bigr\} \bigr] + \bigl[I^{*}_{m} \gamma \bigl\{ I^{*}_{m}\gamma \sigma \eta \\ &{} + \bigl(\gamma + I^{*}_{m}\sigma \eta^{2} \bigr)R_{S}\bigr\} + 2\bigl\{ I^{*}_{m}\sigma \bigl( \gamma + \gamma \eta + I^{*}_{m}\sigma \eta \bigr) + \bigl( \gamma + I^{*}_{m}\sigma \bigl(1 + \eta^{2}\bigr) \bigr)R_{S}\bigr\} \mu_{h} \\ &{} + 3\bigl\{ \gamma + I^{*}_{m}\sigma (1 + \eta ) + R_{S}\bigr\} \mu_{h}^{2} + 4\mu_{h}^{3} + \rho \bigl\{ I^{*}_{m}\gamma \sigma \eta + \bigl(\gamma + I^{*}_{m}\sigma \bigr)R_{S} \\ &{} + 2\bigl(\gamma + I^{*}_{m}\sigma + R_{S} \bigr)\mu_{h} + 3\mu_{h}^{2}\bigr\} \bigr] \mu_{m} \end{aligned}$$
$$\begin{aligned} Y_{2} =& \mu_{h}\bigl[\alpha C_{IA}\bigl\{ I^{*}_{m}\gamma \bigl(I^{*}_{m} + S^{*}_{m}\bigr)I^{*}_{hA} \sigma^{2}\eta + \mu_{h}\bigl\{ I^{*}_{m} \gamma I^{*}_{hA}\sigma \\ &{} + \sigma \bigl\{ \gamma S^{*}_{m}S^{*}_{h} + \gamma \bigl(I^{*}_{m} + S^{*}_{m} \bigr)I^{*}_{hA} + I^{*}_{m} \bigl(I^{*}_{m} + S^{*}_{m} \bigr)I^{*}_{hA}\sigma \bigr\} \eta \\ &{}+ I^{*}_{hA}\mu_{h}(\gamma + S^{*}_{m}\sigma + \bigl(I^{*}_{m} + S^{*}_{m}\bigr)\sigma \eta + \mu_{h}\bigr\} \bigr\} \\ &{} + R_{S}\bigl\{ I^{*}_{m}\gamma I^{*}_{hA}\sigma + \sigma \bigl\{ \gamma S^{*}_{m} \bigl(S^{*}_{h} + I^{*}_{hA}\bigr) + I^{*}_{m}\bigl(I^{*}_{m} + S^{*}_{m}\bigr)I^{*}_{hA}\sigma \bigr\} \eta^{2} \\ &{}+ I^{*}_{hA}\mu_{h}\bigl\{ \gamma + S^{*}_{m}\sigma + \bigl(I^{*}_{m} + S^{*}_{m}\bigr)\sigma \eta^{2} + \mu_{h} \bigr\} \bigr\} \\ &{} + I^{*}_{hA}\rho \bigl\{ I^{*}_{m} \gamma \sigma \eta + \bigl(\gamma + I^{*}_{m}\sigma + \mu_{h}\bigr) (R_{S} + \mu_{h})\bigr\} \\ &{} + \bigl\{ \bigl(I^{*}_{m}\sigma + \mu_{h} \bigr)\bigl\{ (\gamma + \mu_{h}) \bigl(I^{*}_{m} \sigma \eta + \mu_{h}\bigr) + R_{S}\bigl(\gamma + I^{*}_{m}\sigma \eta^{2} + \mu_{h}\bigr) \bigr\} \\ &{} + \rho \bigl\{ I^{*}_{m}\gamma \sigma \eta + \bigl( \gamma + I^{*}_{m}\sigma + \mu_{h}\bigr) (R_{S} + \mu_{h})\bigr\} \bigr\} \bigl(\alpha I^{*}_{hS}C_{IS} + \mu_{m}\bigr)\bigr] \end{aligned}$$

Appendix F: Real and Imaginary Parts of the Expression (16)

$$\operatorname{Re} \bigl[\varDelta (i \omega, \tau )\bigr] = \xi_{1} + \alpha \sigma \psi S_{m}^{*}(\xi_{2} \operatorname{Cos} \omega \tau + \xi_{3} \operatorname{Sin} \omega \tau ) = 0 $$
$$\operatorname{Im} \bigl[\varDelta (i \omega, \tau )\bigr] = \xi_{4} + \alpha \sigma \psi S_{m}^{*}(\xi_{3} \operatorname{Cos} \omega \tau - \xi_{2} \operatorname{Sin} \omega \tau ) = 0 $$

where

$$\begin{aligned} \xi_{1} =& (A_{0} + A_{1}) \omega^{4} - (A_{3} + A_{0} A_{2}) \omega^{2} + A_{0} A_{4} \\ \xi_{2} =& B_{3} \mu_{h} - (B_{2} + B_{1} \mu_{h}) \omega^{2} \\ \xi_{3} =& (B_{3} + B_{2} \mu_{h}) - B_{1} \omega^{2} \\ \xi_{4} =& \omega^{4} - (A_{2} + A_{0} A_{1}) \omega^{2} + (A_{4} + A_{0} A_{3}) \end{aligned}$$

with A 0=α(C IS I hS +C IA I hA )+μ m .

Appendix G: Age Distribution of Population in India

To compare the simulated result with the real malaria cases, one should keep in mind the age distribution of population in that locality. Although due to lack of data availability, we have considered the age-wise population distribution, obtained from 2001 census data of India as a standard population distribution in India (Census of India 2001). According to this distribution, the percentage of population at age a is

$$k = \frac{1}{4.92}(12.41 - 0.156a)\quad \mathrm{with}\ \int _{0}^{a_{\max}} k\,da = 100. $$

Here, a max is the maximum age group of people available in the population.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, S., Sinha, S. & Sarkar, R.R. A Realistic Host-Vector Transmission Model for Describing Malaria Prevalence Pattern. Bull Math Biol 75, 2499–2528 (2013). https://doi.org/10.1007/s11538-013-9905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9905-7

Keywords

Navigation