Skip to main content
Log in

On the biological interpretation of a definition for the parameter R 0 in periodic population models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

An adaptation of the definition of the basic reproduction number R 0 to time-periodic seasonal models was suggested a few years ago. However, its biological interpretation remained unclear. The present paper shows that in demography, this R 0 is the asymptotic ratio of total births in two successive generations of the family tree. In epidemiology, it is the asymptotic ratio of total infections in two successive generations of the infection tree. This result is compared with other recent work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackleh AS, Chiquet RA (2009) The global dynamics of a discrete juvenile–adult model with continuous and seasonal reproduction. J Biol Dyn 3: 101–115

    Article  MathSciNet  Google Scholar 

  • Ackleh AS, Chiquet RA, Zhang P (2011) A discrete dispersal model with constant and periodic environments. J Biol Dyn 5: 563–578

    Article  MathSciNet  MATH  Google Scholar 

  • Alimov SA, Il’in VA (2011) Green function. In: Encyclopaedia of mathematics. Springer, New York. http://eom.springer.de/G/g045090.htm

  • Allen LJS, Bolker BM, Lou Y, Nevai AL (2008) Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discret Cont Dyn Syst 21: 1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Allen LJS, van den Driessche P (2008) The basic reproduction number in some discrete-time epidemic models. J Diff Equa Appl 14: 1127–1147

    Article  MATH  Google Scholar 

  • Assemblée Nationale (2010) Rapport fait au nom de la commission d’enquête sur la manière dont a été programmée, expliquée et gérée la campagne de vaccination contre la grippe A(H1N1). http://www.assemblee-nationale.fr/13/pdf/rap-enq/r2698.pdf

  • Bacaër N (2007) Approximation of the basic reproduction number R 0 for vector-borne diseases with a periodic vector population. Bull Math Biol 69: 1067–1091

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N (2009) Periodic matrix population models: growth rate, basic reproduction number and entropy. Bull Math Biol 71: 1781–1792

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N (2012) The model of Kermack and McKendrick for the plague epidemic in Bombay and the type reproduction number with seasonality. J Math Biol. doi:10.1007/s00285-011-0417-5

  • Bacaër N, Abdurahman X (2008) Resonance of the epidemic threshold in a periodic environment. J Math Biol 57: 649–673

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N, Ait Dads EH (2011) Genealogy with seasonality, the basic reproduction number, and the influenza pandemic. J Math Biol 62: 741–762

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N, Gomes MGM (2009) On the final size of epidemics with seasonality. Bull Math Biol 71: 1954–1966

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N, Guernaoui S (2006) The epidemic threshold of vector-borne diseases with seasonality. J Math Biol 53: 421–436

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N, Ouifki R (2007) Growth rate and basic reproduction number for population models with a simple periodic factor. Math Biosci 210: 647–658

    Article  MathSciNet  MATH  Google Scholar 

  • Berman A, Plemmons RJ (1994) Nonnegative matrices in the mathematical sciences. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn. Sinauer Associates, Sunderland MA

    Google Scholar 

  • Caswell H (2009) Stage, age and individual stochasticity in demography. Oikos 118: 1763–1782

    Article  Google Scholar 

  • Caswell H (2011) Beyond R 0: demographic models for variability of lifetime reproductive output. PLoS ONE 6(6): e20809. doi:10.1371/journal.pone.0020809

    Article  MathSciNet  Google Scholar 

  • Cushing JM, Ackleh AS (2011) A net reproductive number for periodic matrix models. J Biol Dyn. doi:10.1080/17513758.2010.544410

  • Dautray R, Lions JL (1984) Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson, Paris

    Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio R 0 for infectious diseases in heterogeneous populations. J Math Biol 28: 365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Dublin LI, Lotka AJ (1925) On the true rate of natural increase. J Am Stat Assoc 150: 305–339

    Google Scholar 

  • Gedeon T, Bodelón C, Kuenzi A (2010) Hantavirus transmission in sylvan and peridomestic environments. Bull Math Biol 72: 541–564

    Article  MathSciNet  MATH  Google Scholar 

  • Hardy GH (2007) A course of pure mathematics (reprint). Rough Draft Printing

  • Heesterbeek JAP, Roberts MG (1995) Threshold quantities for infectious diseases in periodic environments. J Biol Syst 4: 779–787

    Article  Google Scholar 

  • Heesterbeek JAP, Roberts MG (2007) The type-reproduction number T in models for infectious disease control. Math Biosci 206: 3–10

    Article  MathSciNet  MATH  Google Scholar 

  • Hess P (1991) Periodic–parabolic boundary value problems and positivity. Longman, Harlow

    MATH  Google Scholar 

  • Hunter CM, Caswell H (2005) Selective harvest of sooty shearwater chicks: effects on population dynamics and sustainability. J Anim Ecol 74: 589–600

    Article  Google Scholar 

  • Inaba H (2012) On a new perspective of the basic reproduction number in heterogeneous environments. J Math Biol. doi:10.1007/s00285-011-0463-z

  • Jin Y, Lewis MA (2012) Seasonal influences on population spread and persistence in streams: spreading speeds. J Math Biol. doi:10.1007/s00285-011-0465-x

  • Kingman JFC (1961) A convexity property of positive matrices. Q J Math Oxf 12: 283–284

    Article  MathSciNet  MATH  Google Scholar 

  • Krkošek M, Lewis MA (2010) An R 0 theory for source-sink dynamics with application to Dreissena competition. Theor Ecol 3: 25–43

    Article  Google Scholar 

  • Li CK, Schneider H (2002) Applications of Perron–Frobenius theory to population dynamics. J Math Biol 44: 450–462

    Article  MathSciNet  MATH  Google Scholar 

  • Li J, Blakeley D, Smith RJ (2011) The failure of R 0. Comput Math Methods Med. doi:10.1155/2011/527610

  • Parham PE, Michael E (2010) Modelling the effects of weather and climate change on malaria transmission. Environ Health Persp 118: 620–626

    Article  Google Scholar 

  • Rebelo C, Margheri A, Bacaër N (2012) Persistence in seasonally forced epidemiological models. J Math Biol. doi:10.1007/s00285-011-0440-6

  • Roberts MG, Heesterbeek JAP (2003) A new method for estimating the effort required to control an infectious disease. Proc R Soc Lond B 270: 1359–1364

    Article  Google Scholar 

  • Seneta E (2006) Non-negative matrices and Markov chains. Springer, New York

    MATH  Google Scholar 

  • Smith HL, Thieme HR (2011) Dynamical systems and population persistence. AMS, Providence

    MATH  Google Scholar 

  • Thieme HR (2009) Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math 70: 188–211

    Article  MathSciNet  MATH  Google Scholar 

  • van den Berg F, Bacaër N, Metz JAJ, Lannou C, van den Bosch F (2011) Periodic host absence can select for higher or lower parasite transmission rates. Evol Ecol 25: 121–137

    Article  Google Scholar 

  • Wang W, Zhao XQ (2008) Threshold dynamics for compartmental epidemic models in periodic environments. J Dyn Diff Equa 20: 699–717

    Article  MATH  Google Scholar 

  • Wesley CL, Allen LJS, Langlais M (2010) Models for the spread and persistence of hantavirus infection in rodents with direct and indirect transmission. Math Biosci Eng 7: 195–211

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bacaër.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacaër, N., Ait Dads, E.H. On the biological interpretation of a definition for the parameter R 0 in periodic population models. J. Math. Biol. 65, 601–621 (2012). https://doi.org/10.1007/s00285-011-0479-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0479-4

Keywords

Mathematics Subject Classification (2000)

Navigation