Skip to main content
Log in

Engineering Hybrid Guided Modes in Subwavelength Uniaxial Metamaterial Waveguides

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report anomalous dispersion properties of hybrid guided modes (HGMs) and their group velocity in a subwavelength uniaxial metamaterial waveguide with metal cladding. We derive exact dispersion relations and modal fields of HGMs by solving eigenvalue equation based on basic electromagnetic field theory in detail. Numerical results show that two fundamental HGMs and two types of high-order HGMs can be excited, and their exciting conditions are clarified. In addition, such HGMs can be engineered to belong to normal dispersion or anomalous dispersion. Importantly, the HGMs may be controlled to be forward or backward, and their group velocities may be very small in a certain frequency band. These properties make such metamaterial waveguides have many potential applications in integrated optics, information storage and biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang ZH, Xiao ZY, Li SP (2008) Guided modes in slab waveguides with a left-handed material cover or substrate. Opt Commun 281:607

    Article  CAS  Google Scholar 

  2. Wang GH, Lei YD, Zhang WF (2015) Anomalous dispersion properties of TM waves in subwavelength metallic waveguides loaded by uniaxial metamaterials. Phys Lett A 379:491

    Article  CAS  Google Scholar 

  3. Gao J, Yang XD (2014) Anomalous optical coupling between two silicon wires of a slot waveguide inepsilon-near-zero metamaterials. Opt Commun 314:18–22

    Article  CAS  Google Scholar 

  4. Shi ZW, Guo Q (2009) Modal fields in a symmetric metal-clad planar uniaxial crystal waveguide. J Lightw Technol 27:3135

    Article  Google Scholar 

  5. Yao J, Yang XD, Yin XB, Bartal G, Zhang X (2011) Three-dimensional nanometer-scale optical cavities of indefinite medium. Proc Natl Acad Sci 108:11327

    Article  CAS  Google Scholar 

  6. Belov PA, Simovski CR (2005) Subwavelength metallic waveguides loaded by uniaxial resonant scatterers. Phys Rev E 72:036618

    Article  Google Scholar 

  7. Yang XD, Yao J, Rho J, Yin XB, Zhang X (2012) Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nature Phys 6:450

    CAS  Google Scholar 

  8. Zhu XF, Feng L, Zhang P, Yin XB, Zhang X (2013) One-way invisible cloak using parity-time symmetric transformation optics. Opt Lett 38:2821–2824

    Article  Google Scholar 

  9. Podolskiv VA, Narimanov EE (2005) Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys Rev B 71 :201101

    Article  Google Scholar 

  10. Feise MW, Bevelacqua PJ, Schneider JB (2002) Effects of surface waves on the behavior of perfect lenses. Phys Rev B 66:035113

    Article  Google Scholar 

  11. Silveirinha MG (2013) Theory of spatial optical solitons in metallic nanowire materials. Phys Rev B 87:235115

    Article  Google Scholar 

  12. He YR, Deng HX, Jiao XY, He SL, Gao J, Yang XD (2013) Infrared perfect absorber based on nanowire metamaterial cavities. Opt Lett 38:1179

    Article  CAS  Google Scholar 

  13. Demiguel S, Li XW, Li N, Chen H, Campbell JC, Wei J, Anselm A (2005) Analysis of partially depleted absorber waveguide photodiodes. J Lightw Technol 23:2505

    Article  CAS  Google Scholar 

  14. Lei YD, Wang GH, Zhang WF (2014) Anomalous dispersion and group velocity properties in subwavelength uniaxial metamaterial waveguide with metal cladding. Appl Phys A 117:1437

    Article  CAS  Google Scholar 

  15. Wu L, He SL, Chen H (2003) On unusual narrow transmission bands for a multi-layered periodic structure containing left-handed materials. Opt Express 11:1283

    Article  Google Scholar 

  16. Ginis V, Tassin P, Soukoulis CM, Veretennicoff I (2013) Enhancing optical gradient forces with metamaterials. Phys Rev Lett 110:057401

    Article  Google Scholar 

  17. Christensen J, de Abajo FJG (2012) Anisotropic metamaterials for full control of acoustic waves. Phys Rev Lett 108:124301

    Article  Google Scholar 

  18. Ruppin R (2000) Surface polaritons of a left-handed medium. Phys Lett A 61:277

    Google Scholar 

  19. Mirmoosa MS, Kosulnikov SY, Simovski CR (2015) Unbounded spatial spectrum of propagating waves in a polaritonic wire medium. Phys Rev B 92:075139

    Article  Google Scholar 

  20. Bogdanov AA, Shalin AS, Ginzburg P (2015) Optical forces in nanorod metamaterial. Sci Rep 5:15846

    Article  CAS  Google Scholar 

  21. Shen NH, Wang Q, Chen J, Fan YX, Ding JP, Wang HT, Tian YJ, Ming NB (2005) Optically uniaxial left-handed materials. Phys Rev B 72:153104

    Article  Google Scholar 

  22. Smith DR, Schurig S (2003) Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys Rev Lett 90:077401

    Article  Google Scholar 

  23. Pan T, Xu GD, Zang TC, Gao L (2009) Study of a slab waveguide loaded with dispersive anisotropic metamaterials. Appl Phys A 95:367

    Article  CAS  Google Scholar 

  24. Shadrivov IV, Sukhorukov AA, Kivsar YS (2003) Guided modes in negative-refractive-index waveguides. Phys Rev E 67 :057602

    Article  Google Scholar 

  25. Shelby R, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11474106 and 61178003) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Wang.

Appendix A: Proof of Δ>0 and ω 2/c 2<β 2 cos2𝜃/ε 1 μ 1

Appendix A: Proof of Δ>0 and ω 2/c 2<β 2 cos2𝜃/ε 1 μ 1

According to the necessary and sufficient conditions (2) of optically uniaxial metamaterials, we can get μ 1 ε 2μ 2 ε 1≠0, where ε 1 μ 1>0.

The sign of the expression, ω 2/c 2β 2 cos2𝜃/ε 1 μ 1, would affect the roots of Eq. 12. In fact, the expression is only less than zero at the discussed two kinds of uniaxial metamaterial structures at present.

We can use reduction to absurdity to prove the expression is less than zero. Supposing ω 2/c 2β 2 cos2𝜃/ε 1 μ 1>0, we can obtain cos2𝜃<ω 2 ε 1 μ 1/(c 2 β 2), where ε 1 μ 1>0.

If μ 1/μ 2>ε 1/ε 2, two roots of Eq. 12 can be written as

$$ r_{1}=\beta^{2}\sin^{2}\theta +\beta^{2}\cos^{2}\theta \mu_{2}/\mu_{1}-\mu_{2}\varepsilon_{1}\omega^{2}/c^{2}, $$
(A1)
$$ r_{2}=\beta^{2}\sin^{2}\theta +\beta^{2}\cos^{2}\theta \varepsilon_{2}/\varepsilon_{1}-\mu_{1}\varepsilon_{2}\omega^{2}/c^{2}. $$
(A2)

According to the analyses about r 1 and r 2, one can know that only when r 1<0 or r 2<0, electromagnetic modes can propagate in the uniaxial metamaterial waveguide structures. If r 1<0, from Eq. A1, we can obtain cos2𝜃+ sin2𝜃 μ 1/μ 2>ω 2 μ 1 ε 1/(c 2 β 2). If r 2<0, from Eq. A2 ),we can get cos2𝜃+ sin2𝜃 ε 1/ε 2>ω 2 μ 1 ε 1/(c 2 β 2). On account of ε 1/ε 2<0, μ 1/μ 2<0, so we can get ω 2/c 2β 2 cos2𝜃/ε 1 μ 1 <0, which is mutually contradictory with the previous assumption.

If μ 1/μ 2<ε 1/ε 2, similarly, we can get ω 2/c 2β 2 cos2𝜃/ε 1 μ 1 <0, which is also mutually contradictory with the previous assumption.

In addition, supposing ω 2/c 2β 2 cos2𝜃/ε 1 μ 1=0, that is to say, β 2 = ω 2 ε 1 μ 1/(c 2 cos2𝜃). On account of the constraint of frequency we discussed, we can get r 1,2= tan2𝜃 ε 1 μ 1 ω 2/c 2>0. Only r 1,2<0, however, the waveguide modes can exist, so we can get ω 2/c 2β 2 cos2𝜃/ε 1 μ 1≠0.

Then due to ω 2/c 2β 2 cos2𝜃/ε 1 μ 1<0 and μ 1 ε 2μ 2 ε 1≠0 , from Eq. 13, we can get the discriminant Δ>0, that is to say, Eq. 12 has two different roots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhang, J. & Wang, G. Engineering Hybrid Guided Modes in Subwavelength Uniaxial Metamaterial Waveguides. Plasmonics 12, 245–255 (2017). https://doi.org/10.1007/s11468-016-0256-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0256-8

Keywords

Navigation