Skip to main content
Log in

An Efficient Coupling Scheme Between Photonic Crystal Waveguides and Plasmonic Metal-Insulator-Metal Waveguides

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, an efficient bi-directional optical coupler has been proposed. Our approach involves the development of a novel mechanism aimed at coupling a plasmonic waveguide to a photonic crystal waveguide. The innovative design of the small-scale plasmonic-photonic crystal-plasmonic coupler (PW-PC-PW) facilitates optimal power transmission between these interconnected waveguides. To conduct comprehensive simulations of the plasmonic-photonic crystal-plasmonic waveguides, we employ the finite difference time domain (FDTD) method. By establishing a coupling between the photonic crystal and plasmonic structures, we achieve efficient signal transfer, thereby laying the foundation for the creation of diverse devices that amalgamate the advantages offered by plasmonic devices and photonic crystals. Consequently, the device outlined in this paper holds substantial promise as a pivotal component for various types of optical integrated circuit devices. The electromagnetic waves operating within this structure fall within the wavelength range of 1500 to 2050 nm, and the achieved transmittance value at a wavelength of λ = 1550 nm reaches an impressive 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91

    Article  CAS  Google Scholar 

  2. Veronis G, Fan S (2007) Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides. Opt Express 15(3):1211–1221

    Article  PubMed  Google Scholar 

  3. Yang R, Lu Z (2011) Silicon-on-insulator platform for integration of 3-D nanoplasmonic devices. IEEE Photonics Technol Lett 23(22):1652–1654

    Article  Google Scholar 

  4. Tian J, Yu S, Yan W, Qiu M (2009) Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface. Appl Phys Lett 95(1):013504

    Article  Google Scholar 

  5. Yang R, Wahsheh RA, Lu Z, Abushagur MA (2010) Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide. Opt Lett 35(5):649–651

    Article  PubMed  Google Scholar 

  6. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  7. Takahara J, Yamagishi S, Taki H, Morimoto A, Kobayashi T (1997) Guiding of a one-dimensional optical beam with nanometer diameter. Opt Lett 22(7):475–477

    Article  CAS  PubMed  Google Scholar 

  8. Weeber JC, Dereux A, Girard C, Krenn JR, Goudonnet JP (1999) Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys Rev B 60(12):9061

    Article  CAS  Google Scholar 

  9. Krenn JR, Lamprecht B, Ditlbacher H, Schider G, Salerno M, Leitner A, Aussenegg FR (2002) Non–diffraction-limited light transport by gold nanowires. Europhys Lett 60(5):663

    Article  CAS  Google Scholar 

  10. Brongersma ML, Hartman JW, Atwater HA (2000) Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62(24):R16356

    Article  CAS  Google Scholar 

  11. Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AA (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232

    Article  CAS  PubMed  Google Scholar 

  12. Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95(4):046802

    Article  PubMed  Google Scholar 

  13. Moradi M, Danaie M, Orouji AA (2019) Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt Quant Electron 51(5):1–8

    Article  CAS  Google Scholar 

  14. Farmani A, Mir A, Sharifpour Z (2018) Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl Surf Sci 453:358–364

    Article  CAS  Google Scholar 

  15. Farmani A, Yavarian M, Alighanbari A, Miri M, Sheikhi MH (2017) Tunable graphene plasmonic Y-branch switch in the terahertz region using hexagonal boron nitride with electric and magnetic biasing. Appl Opt 56(32):8931–8940

    Article  CAS  PubMed  Google Scholar 

  16. Salmanpour A, Mohammadnejad S, Bahrami A (2015) All-optical photonic crystal AND, XOR, and OR logic gates using nonlinear Kerr effect and ring resonators. J Mod Opt 62(9):693–700

    Article  Google Scholar 

  17. Danaie M, Shahzadi A (2019) Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14(6):1453–1465

    Article  CAS  Google Scholar 

  18. Tavakoli F, Zarrabi FB, Saghaei H (2019) Modeling and analysis of high-sensitivity refractive index sensors based on plasmonic absorbers with Fano response in the near-infrared spectral region. Appl Opt 58(20):5404–5414

    Article  CAS  PubMed  Google Scholar 

  19. Madadi Z, Abedi K, Darvish G, Khatir M (2019) Prediction of resonant frequencies of a dual-wavelength plasmonic perfect absorber as a sensor by resistor–inductor–capacitor circuit models. J Nanophotonics 13(2):026010

    Article  CAS  Google Scholar 

  20. Rakhshani MR, Mansouri-Birjandi MA (2017) Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application. Plasmonics 12:999–1006

    Article  CAS  Google Scholar 

  21. Farmani A, Mir A, Bazgir M, Zarrabi FB (2018) Highly sensitive nano-scale plasmonic biosensor utilizing Fano resonance metasurface in THz range: numerical study. Physica E 104:233–240

    Article  CAS  Google Scholar 

  22. Farmani A (2019) Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. JOSA B 36(2):401–407

    Article  CAS  Google Scholar 

  23. Rakhshani MR, Tavousi A, Mansouri-Birjandi MA (2018) Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl Opt 57(27):7798–7804

    Article  CAS  PubMed  Google Scholar 

  24. Rakhshani MR, Mansouri-Birjandi MA (2016) High-sensitivity plasmonic sensor based on metal–insulator–metal waveguide and hexagonal-ring cavity. IEEE Sens J 16(9):3041–3046

    Article  CAS  Google Scholar 

  25. Khani S, Danaie M, Rezaei P (2018) Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Opt Commun 420:147–156

    Article  CAS  Google Scholar 

  26. Janfaza M, Mansouri-Birjandi MA, Tavousi A (2017) Tunable plasmonic band-pass filter based on Fabry–Perot graphene nanoribbons. Appl Phys B 123:1–9

    Article  CAS  Google Scholar 

  27. Khani S, Danaie M, Rezaei P (2018) Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt Eng 57(10):107102

    Article  Google Scholar 

  28. Rakhshani MR, Mansouri-Birjandi MA (2016) Dual wavelength demultiplexer based on metal–insulator–metal plasmonic circular ring resonators. J Mod Opt 63(11):1078–1086

    Article  CAS  Google Scholar 

  29. Danaie M, Geravand A (2018) Design of low-cross-talk metal–insulator–metal plasmonic waveguide intersections based on proposed cross-shaped resonators. J Nanophotonics 12(4):046009

    Article  Google Scholar 

  30. Khani S, Danaie M, Rezaei P (2019) Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods. Physica E 113:25–34

    Article  CAS  Google Scholar 

  31. Khani S, Danaie M, Rezaei P (2019) Design of a single-mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides. Plasmonics 14:53–62

    Article  CAS  Google Scholar 

  32. Khani S, Danaie M, Rezaei P (2019) Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U‐shaped cavities. IET Optoelectron 13(4):161–171

    Article  Google Scholar 

  33. Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Molding the flow of light. Princet. Univ, Princeton, NJ [ua]

    Google Scholar 

  34. Moradi M, Danaie M, Orouji AA (2018) Design and analysis of an optical full-adder based on nonlinear photonic crystal ring resonators. Optik 172:127–136

    Article  CAS  Google Scholar 

  35. Sharkawy A, Shi S, Prather DW, Soref RA (2002) Electro-optical switching using coupled photonic crystal waveguides. Opt Express 10(20):1048–1059

    Article  PubMed  Google Scholar 

  36. Danaie M, Kaatuzian H (2012) Design and simulation of an all-optical photonic crystal AND gate using nonlinear Kerr effect. Opt Quant Electron 44:27–34

    Article  CAS  Google Scholar 

  37. Zhang X, Wang Y, Sun J, Liu D, Huang D (2004) All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs. Opt Express 12(3):361–366

    Article  PubMed  Google Scholar 

  38. Shaaban A, Du YC, Gomaa LR (2020) Transmissivity assessment of plasmonic-dielectric waveguide interconnects via modified FFT-BPM. Optik 208:164143

    Article  CAS  Google Scholar 

  39. Wahsheh RA (2021) Ultra-compact broadband 3-db metal–dielectric-metal plasmonic power splitter. J Mod Opt 68(3):153–160

    Article  CAS  Google Scholar 

  40. Chen CT, Xu X, Hosseini A, Pan Z, Chen RT (2015) High efficiency silicon strip waveguide to plasmonic slot waveguide mode converter. Opt Interconnects XV 9368:48–54. SPIE

    Google Scholar 

  41. Atia KS, Heikal AM, Obayya SS (2015) Analysis of plasmonic couplers using finite element frequency domain. In 2015 31st International Review of Progress in Applied Computational Electromagnetics (ACES) (pp. 1–2). IEEE

  42. Wahsheh RA, Lu Z, Abushagur MA (2014) Ultra-compact integrated nanoplasmonic air-gap coupler. In Frontiers in Optics. (pp. FTh4E-5). Optica Publishing Group

  43. Ginzburg P, Arbel D (2005) Efficient coupling of nano-plasmonics to micro-photonic circuitry. In Conference on Lasers and Electro-Optics (p. CWN5). Optica Publishing Group

  44. Chen L, Shakya J, Lipson M (2006) Subwavelength confinement in an integrated metal slot waveguide on silicon. Opt Lett 31(14):2133–2135

    Article  CAS  PubMed  Google Scholar 

  45. Hochberg M, Baehr-Jones T, Walker C, Scherer A (2004) Integrated plasmon and dielectric waveguides. Opt Express 12(22):5481–5486

    Article  PubMed  Google Scholar 

  46. Farmani A, Mir A, Irannejad M (2019) 2D-FDTD simulation of ultra-compact multifunctional logic gates with nonlinear photonic crystal. JOSA B 36(4):811–818

    Article  CAS  Google Scholar 

  47. Saghaei H, Zahedi A, Karimzadeh R, Parandin F (2017) Line defects on As2Se3-chalcogenide photonic crystals for the design of all-optical power splitters and digital logic gates. Superlattices Microstruct 110:133–138

    Article  CAS  Google Scholar 

  48. Rashki Z, Mansouri MA, Rakhshani MR (2013) New design of optical add-drop filter based on triangular lattice photonic crystal ring resonator. Tech J Eng Appl Sci 3:441

    Google Scholar 

  49. Rakhshani MR, Mansouri-Birjandi MA (2014) Design and simulation of four-channel wavelength demultiplexer based on photonic crystal circular ring resonators for optical communications. J Opt Commun 35(1):9–15

    Article  Google Scholar 

  50. Danaie M, Hajshahvaladi L, Ghaderpanah E (2023) A single-mode tunable plasmonic sensor based on an 8-shaped resonator for cancer cell detection. Sci Rep 13(1):13976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moradi M, Danaie M, Orouji AA (2022) All-optical NOR and NOT logic gates based on ring resonator-based plasmonic nanostructures. Optik 258:168905

    Article  CAS  Google Scholar 

  52. Jafari D, Danaie M, Orouji AA (2021) Ultra-fast two-bit all-optical analog to digital convertor based on surface plasmons and kerr-type nonlinear cavity. Plasmonics 16(6):2101–2108

    Article  CAS  Google Scholar 

  53. Settle M, Salib M, Michaeli A, Krauss TF (2006) Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography. Opt Express 14(6):2440–2445

    Article  PubMed  Google Scholar 

  54. Bogaerts W, Dumon P, Van Campenhout J, Wiaux V, Wouters J, Beckx S, Taillaert D, Luyssaert B, Van Thourhout D, Baets R Deep UV (2003) lithography for planar photonic crystal structures. In The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003 2:754–755. IEEE

  55. Lin CY, Wang X, Chakravarty S, Lai WC, Lee BS, Chen RT (2011) Group velocity independent coupling into slow light photonic crystal waveguide on silicon nanophotonic integrated circuits. Optoelectron Interconnects Component Integr XI 7944:139–145. SPIE

    Google Scholar 

  56. Kwon SH, Park HG, Lee YH (2012) Photonic crystal lasers. InSemiconductors and Semimetals 2012 Jan 1, vol 86. Elsevier, pp 301–333

    Google Scholar 

  57. Gu Z, Song Q, Xiao S (2021) Nanowire waveguides and lasers: advances and opportunities in photonic circuits. Front Chem 8:613504

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lin CC, Chang PH, Su Y, Helmy AS (2020) Monolithic plasmonic waveguide architecture for passive and active optical circuits. Nano Lett 20(5):2950–2957

    Article  CAS  PubMed  Google Scholar 

  59. Fang Y, Sun M (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Sci Appl 4(6):e294-

    Article  CAS  Google Scholar 

  60. Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M (2020) Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics 14(1):37–43

    Article  CAS  Google Scholar 

  61. Tuniz A (2021) Nanoscale nonlinear plasmonics in photonic waveguides and circuits. La Rivista Del Nuovo Cimento 44(4):193–249

    Article  CAS  Google Scholar 

  62. Koch U, Uhl C, Hettrich H, Fedoryshyn Y, Hoessbacher C, Heni W, Baeuerle B, Bitachon BI, Josten A, Ayata M, Xu H (2020) A monolithic bipolar CMOS electronic–plasmonic high-speed transmitter. Nat Electron 3(6):338–345

    Article  CAS  Google Scholar 

  63. Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9(7–8):20–27

    Article  CAS  Google Scholar 

  64. Fukuda M, Tonooka Y, Inoue T, Ota M (2019) Feasibility of plasmonic circuits for on-chip interconnects. Solid State Electron 156:33–40

    Article  CAS  Google Scholar 

  65. Chamanzar M, Xia Z, Yegnanarayanan S, Adibi A (2013) Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy. Opt Express 21(26):32086–32098

    Article  CAS  PubMed  Google Scholar 

  66. Mekis A, Chen JC, Kurland I, Fan S, Villeneuve PR, Joannopoulos JD (1996) High transmission through sharp bends in photonic crystal waveguides. Phys Rev Lett 77(18):3787

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Design, analysis, and investigation: Ehsan Beiranvand, Mohammad Danaie. Writing—original draft preparation: Ehsan Beiranvand. Writing—review and editing: Mohammad Danaie. Supervision: Mohammad Danaie, Majid Afsahi.

Corresponding author

Correspondence to Mohammad Danaie.

Ethics declarations

Ethics Approval

We the undersigned declare that the manuscript entitled “An efficient coupling scheme between photonic crystal waveguides and plasmonic metal-insulator-metal waveguides” is original, has not been fully or partly published before, and is not currently being considered for publication elsewhere. Also, results are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beiranvand, E., Danaie, M. & Afsahi, M. An Efficient Coupling Scheme Between Photonic Crystal Waveguides and Plasmonic Metal-Insulator-Metal Waveguides. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02327-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02327-z

Keywords

Navigation