Skip to main content
Log in

Optical Properties and Liquid Sensitivity of Au-SiO2-Au Nanobelt Structure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Optical properties of the Au-SiO2-Au nanobelt structure with quasiperiodicity along x-axis and fixed Au height, width and different spacer (dielectric) heights were numerically investigated for sensing application of liquids with refractive indices close to the water. Although both propagated surface plasmon mode and localized surface plasmon mode were recorded in the single-layer Au and Au-SiO2-Au nanobelt structure, only the localized surface plasmon mode was recorded in the Au-SiO2 nanobelt structure. The effects of increasing the dielectric layer (between two Au nanobelts) height on the extinction spectrum were observed as blue shift of whole extinction spectrum. It was found that the localized surface plasmon mode shift was negligible while the propagated surface plasmon mode was significantly shifted towards smaller wavelength. The minimum resonance linewidth was calculated as 42 nm at refractive index of 1.377, which is much smaller than that in the single-layer Au and Au-SiO2 nanobelt structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Article  CAS  Google Scholar 

  2. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641–648

    Article  CAS  Google Scholar 

  3. Maier SA (2007) Plasmonics:fundamentals and applications. Springer

  4. Anderson LJE et al (2011) A tunable plasmon resonance in gold nanobelts. Nano Lett 11(11):5034–5037

    Article  CAS  Google Scholar 

  5. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706

    Article  CAS  Google Scholar 

  6. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B Chem 54(1–2):3–15

    Article  CAS  Google Scholar 

  7. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857

    Article  CAS  Google Scholar 

  8. Saber MG, Sagor R (2013) Characteristics of symmetric surface plasmon polariton mode in glass–metal–glass waveguide. Plasmonics 8(4):1621–1625

    Article  CAS  Google Scholar 

  9. Zhu J, Huang X, Mei X (2012) A laser structure based on metal-dielectric-metal plasmonic nanocavity. Plasmonics 7(1):93–98

    Article  Google Scholar 

  10. Liao H, Nehl CL, Hafner JH (2006) Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1(2):201–208

    Article  CAS  Google Scholar 

  11. Sullivan DM (2000) Electromagnetic simulation using the FDTD method. IEEE Press Series, New York

    Book  Google Scholar 

  12. Alexandre V, Thierry L (2007) Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method. J Phys D Appl Phys 40(22):7152

    Article  Google Scholar 

  13. Rakic AD et al (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283

    Article  CAS  Google Scholar 

  14. Hohenau A et al (2005) Dielectric optical elements for surface plasmons. Opt Lett 30(8):893–895

    Article  CAS  Google Scholar 

  15. Svelto O (2010) Principles of Lasers 5ed

  16. Jackson JD(1962) Classical electro dynamics.Wiley

  17. Hohenau A, Leitner A, Aussenegg F (2007) Near-field and far-field properties of nanoparticle arrays. In: Brongersma M, Kik P (eds) Surface plasmon nanophotonics. Springer, Netherlands, pp 11–25

    Chapter  Google Scholar 

  18. Irannejad M, Yavuz M, Cui B (2013) Finite difference time domain study of light transmission through multihole nanostructures in metallic film. Photon Res 1(4):154–159

    Article  CAS  Google Scholar 

  19. Belotelov VI et al (2012) Fabry-Perot plasmonic structures for nanophotonics. J Opt Soc Am B 29(3):294–299

    Article  CAS  Google Scholar 

  20. Ebbesen TW et al (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669

    Article  CAS  Google Scholar 

  21. Carretero-Palacios S et al (2012) Effect of film thickness and dielectric environment on optical transmission through subwavelength holes. Phys Rev B 85(3):035417

    Article  Google Scholar 

  22. Dostálek J, Kasry A, Knoll W (2007) Long range surface plasmons for observation of biomolecular binding events at metallic surfaces. Plasmonics 2(3):97–106

    Article  Google Scholar 

  23. Lee K-S et al (2010) Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach. Sensors 10(12):11390–11399

    Article  CAS  Google Scholar 

  24. Brolo AG et al (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20(12):4813–4815

    Article  CAS  Google Scholar 

  25. Irannejad M, Cui B, Yavuz M (2015) The effects of varying dielectric spacer height on the reflection resonance spectrum of gold nanorod-on-mirror grating structure. Plasmonics. doi:10.1007/s11468-015-9878-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Irannejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irannejad, M., Cui, B. & Yavuz, M. Optical Properties and Liquid Sensitivity of Au-SiO2-Au Nanobelt Structure. Plasmonics 11, 1–9 (2016). https://doi.org/10.1007/s11468-015-9977-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9977-3

Keywords

Navigation