Skip to main content
Log in

Surface Plasmon Excitation: Theory, Configurations, and Applications

  • REVIEW
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This review presents the theory, configurations, and various applications of plasmonics in a variety of surface plasmon–based devices. It describes how light waves travel along the surface where metals and dielectrics meet, revealing the detailed reasons behind the phenomenon. Here, we have used the well-known Drude optical model, a widely accepted theoretical approach, to figure out how different materials behave by considering atoms as tiny vibrating dipoles. In this review, we have thoroughly looked at many aspects, all wrapped up in the concept of complex dielectric functions. We used Maxwell’s equations customized for simple, non-magnetic materials to derive the above mentioned model, with the goal of helping to better grasp how surface plasmon polaritons are generated. In this research, we have organized the conditions needed for momentum matching by applying particular boundary conditions. Along with, we presented different techniques required for the generation of surface plasmon polaritons. We studied how metal and dielectric materials work together, by making comparisons to different optical devices along the way. Our main focus on the subject highlights the significant possibilities that this theory and research offers to various plasmonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data and information that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. History and Significance of the Electron (1937) Nature 139(3510):226–226

    Google Scholar 

  2. Wang L, Hasanzadeh Kafshgari M, Meunier M (2020) Optical properties and applications of plasmonic‐metal nanoparticles. Adv Funct Mater 30(51):2005400

  3. García MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 44(28):283001

    Article  Google Scholar 

  4. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106(5):874

    Article  CAS  Google Scholar 

  5. Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6(11):709

    Article  CAS  Google Scholar 

  6. Bellapadrona G et al (2012) Optimization of localized surface plasmon resonance transducers for studying carbohydrate–protein interactions. Anal Chem 84(1):232–240

    Article  CAS  PubMed  Google Scholar 

  7. Yeo Y-C, King T-J, Hu C (2002) Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology. J Appl Phys 92(12):7266–7271

    Article  CAS  Google Scholar 

  8. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media

  9. Cárdenas-Sevilla GA et al (2011) Photonic crystal fiber sensor array based on modes overlapping. Opt Express 19(8):7596–7602

    Article  PubMed  Google Scholar 

  10. Iqbal T, Afsheen S (2016) Plasmonic band gap: role of the slit width in 1D metallic grating on higher refractive index substrate. Plasmonics 11(3):885–893

    Article  CAS  Google Scholar 

  11. Reitz JR, Milford FJ, Christy RW (2008) Foundations of electromagnetic theory. Addison-Wesley Publishing Company

  12. Iqbal T (2013) Nanoplasmonic grating coupler for transducer applications. Queen's University Belfast

  13. Iqbal T (2015) Propagation length of surface plasmon polaritons excited by a 1D plasmonic grating. Curr Appl Phys 15(11):1445–1452

    Article  Google Scholar 

  14. Zhang X et al (2013) Plasmonic photocatalysis. Reports on progress in physics. Phys Soc 76(4):046401

  15. Murata K-I, Tanaka H (2010) Surface-wetting effects on the liquid–liquid transition of a single-component molecular liquid. Nat Commun 1(1):1–9

    Article  CAS  Google Scholar 

  16. Drude P (1900) Zur elektronentheorie der metalle. Ann Phys 306(3):566–613

    Article  Google Scholar 

  17. Drude P (1900) Zur elektronentheorie der metalle; II. Teil. galvanomagnetische und thermomagnetische effecte. Annalen der Physik 308(11):369–402

  18. Yang R, Lu Z (2012) Subwavelength plasmonic waveguides and plasmonic materials. Int J Opt 2012

  19. Ozgur FO et al (2023) Surface Plasmon Resonance Based Sensor for Amaranth Detection With Molecularly Imprinted Nanoparticles. Photonic Sensors 13(2):230201

    Article  CAS  Google Scholar 

  20. Brongersma ML, Kik PG (2007) Surface plasmon nanophotonics. Springer

  21. Englebienne P, Hoonacker AV, Verhas M (2003) Surface plasmon resonance: principles, methods and applications in biomedical sciences. J Spectrosc 17(2–3):255–273

    Article  CAS  Google Scholar 

  22. Homola J (2006) Electromagnetic theory of surface plasmons. Surface plasmon resonance based sensors. Springer, pp 3–44

    Chapter  Google Scholar 

  23. Iqbal T, Afsheen S (2017) One dimensional plasmonic grating: high sensitive biosensor. Plasmonics 12(1):19–25

    Article  CAS  Google Scholar 

  24. Raether H (1988) Surface plasmons on gratings. Surface plasmons on smooth and rough surfaces and on gratings. Springer, pp 91–116

    Chapter  Google Scholar 

  25. Ijaz M et al (2020) Novel Au nano-grating for detection of water in various electrolytes. Appl Nanosci 10(11):4029–4036

    Article  CAS  Google Scholar 

  26. Afsheen S et al (2019) Modeling of 1D Au plasmonic grating as efficient gas sensor. Materials Research Express 6(12):126203

    Article  CAS  Google Scholar 

  27. Hu EL, Brongersma M, Baca A (2011) Applications: nanophotonics and plasmonics. Nanotechnology Research Directions for Societal Needs in 2020. Springer, pp 417–444

    Chapter  Google Scholar 

  28. Yanase Y et al (2016) Diagnosis of immediate-type allergy using surface plasmon resonance. Optical Materials Express 6(4):1339–1348

    Article  CAS  Google Scholar 

  29. Iqbal T, Afsheen S (2016) Extraordinary optical transmission: Role of the slit width in 1D metallic grating on higher refractive index substrate. Curr Appl Phys 16(4):453–458

    Article  Google Scholar 

  30. Roh S, Chung T, Lee B (2007) Overview of plasmonic sensors and their design methods. in Advanced Sensor Systems and Applications IV. 2010. Int Soc Opt Photon

  31. Nenninger GG, Piliarik M, Homola J (2002) Data analysis for optical sensors based on spectroscopy of surface plasmons. Meas Sci Technol 13(12):2038

    Article  CAS  Google Scholar 

  32. Lee K-S et al (2010) Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach. Sensors 10(12):11390–11399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kabashin A et al (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8(11):867–871

    Article  CAS  PubMed  Google Scholar 

  34. Lahav A, Auslender M, Abdulhalim I (2008) Sensitivity enhancement of guided-wave surface-plasmon resonance sensors. Opt Lett 33(21):2539–2541

    Article  CAS  PubMed  Google Scholar 

  35. Bin W, Qing-Kang W (2008) High sensitivity transmission-type SPR sensor by using metallic–dielectric mixed gratings. Chin Phys Lett 25(5):1668

    Article  Google Scholar 

  36. Homola J, Lu HB, Yee SS (1999) Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer. Electron Lett 35(13):1105–1106

    Article  CAS  Google Scholar 

  37. Huang D-W et al (2010) Approach the angular sensitivity limit in surface plasmon resonance sensors with low index prism and large resonant angle. Opt Eng 49(5):054403

    Article  Google Scholar 

  38. Chen B-H, Wang Y-C, Lin J-H (2008) High sensitivity of phase-based surface plasmon resonance in nano-cylinder array. PIERS Online 4(7):746–750

    Article  Google Scholar 

  39. Dostálek J, Vaisocherová H, Homola J (2005) Multichannel surface plasmon resonance biosensor with wavelength division multiplexing. Sens Actuators, B Chem 108(1–2):758–764

    Article  Google Scholar 

  40. Nguyen HH et al (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15(5):10481–10510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ray S, Mehta G, Srivastava S (2010) Label-free detection techniques for protein microarrays: Prospects, merits and challenges. Proteomics 10(4):731–748

    Article  CAS  PubMed  Google Scholar 

  42. Larsson EM, Syrenova S, Langhammer C (2012) Nanoplasmonic sensing for nanomaterials science. Nanophotonics 1(3–4):249–266

    Article  CAS  Google Scholar 

  43. Langhammer C et al (2010) Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry. Nano Lett 10(9):3529–3538

    Article  CAS  PubMed  Google Scholar 

  44. Ramola A, Marwaha A, Singh S (2023) Pregnancy detection through modelling of dual-polarized plasmonic PREGBIOSENSOR by urine samples analysis. Plasmonics 1–17

  45. Alhaddad AY et al (2022) Sense and learn: recent advances in wearable sensing and machine learning for blood glucose monitoring and trend-detection. Frontiers in Bioengineering and Biotechnology 10:876672

    Article  PubMed  PubMed Central  Google Scholar 

  46. Anker JN et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  CAS  PubMed  Google Scholar 

  47. Myszka DG, Rich RL (2000) Implementing surface plasmon resonance biosensors in drug discovery. Pharm Sci Technol Today 3(9):310–317

    Article  CAS  PubMed  Google Scholar 

  48. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  PubMed  Google Scholar 

  49. Olaru A et al (2015) Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit Rev Anal Chem 45(2):97–105

    Article  CAS  PubMed  Google Scholar 

  50. Nayak S, Chaudhari A, Vaidhun B (2020) Synthesis, characterization and ameliorative properties of food, formulation and cosmetic additives: case study of zinc oxide nanoparticles. Journal of Excipients and Food Chemicals 11(4):79–92

    Google Scholar 

  51. Wu H-J et al (2012) Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. nature methods. 9(12):1189–1191

  52. Concepcion J et al (2009) Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization. Comb Chem High Throughput Screening 12(8):791–800

    Article  CAS  Google Scholar 

  53. Song L et al (2021) Flexible plasmonic biosensors for healthcare monitoring: progress and prospects. ACS Nano 15(12):18822–18847

    Article  CAS  PubMed  Google Scholar 

  54. Kong Y et al (2011) Evanescent coupling between dielectric and plasmonic waveguides for HAMR applications. IEEE Trans Magn 47(10):2364–2367

    Article  Google Scholar 

  55. Stamps RL et al (2014) The 2014 magnetism roadmap. J Phys D Appl Phys 47(33):333001

    Article  Google Scholar 

  56. Rizvi MH et al (2022) Magnetic alignment for plasmonic control of gold nanorods coated with iron oxide nanoparticles. Adv Mater 34(40):2203366

    Article  CAS  Google Scholar 

  57. Kuppe C et al (2020) “Hot” in plasmonics: temperature-related concepts and applications of metal nanostructures. Advanced Optical Materials 8(1):1901166

    Article  CAS  Google Scholar 

  58. Cao E et al (2018) Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics 7(1):145–167

    Article  Google Scholar 

  59. Manuel AP et al (2019) Plexcitonics–fundamental principles and optoelectronic applications. Journal of Materials Chemistry C 7(7):1821–1853

    Article  CAS  Google Scholar 

  60. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910

    Article  CAS  PubMed  Google Scholar 

  61. Habault D, Zhang H, Zhao Y (2013) Light-triggered self-healing and shape-memory polymers. Chem Soc Rev 42(17):7244–7256

    Article  CAS  PubMed  Google Scholar 

  62. Lotnyk A, Behrens M, Rauschenbach B (2019) Phase change thin films for non-volatile memory applications. Nanoscale Advances 1(10):3836–3857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gu M, Zhang Q, Lamon S (2016) Nanomaterials for optical data storage. Nat Rev Mater 1(12):1–14

    Article  Google Scholar 

  64. Zijlstra P, Chon JW, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. nature. 459(7245):410–413

  65. Chu S-W et al (2014) Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope. Phys Rev Lett 112(1):017402

    Article  PubMed  Google Scholar 

  66. Faucheaux JA, Stanton AL, Jain PK (2014) Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities. The journal of physical chemistry letters 5(6):976–985

    Article  CAS  PubMed  Google Scholar 

  67. Lim S-J et al (2015) Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors. Sci Rep 5(1):7708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Goh XM et al (2014) Three-dimensional plasmonic stereoscopic prints in full colour. Nat Commun 5(1):5361

    Article  CAS  PubMed  Google Scholar 

  69. Li G, Zhang S, Zentgraf T (2017) Nonlinear photonic metasurfaces. Nat Rev Mater 2(5):1–14

    Article  Google Scholar 

  70. Huang L et al (2013) Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4(1):2808

    Article  Google Scholar 

  71. Sayed M et al (2022) Non-noble plasmonic metal-based photocatalysts. Chem Rev 122(11):10484–10537

    Article  CAS  PubMed  Google Scholar 

  72. Lee GY, Sung J, Lee B (2019) Recent advances in metasurface hologram technologies. ETRI J 41(1):10–22

    Article  Google Scholar 

  73. John GS et al (2023) Nano-and smart materials in solar energy, conversion, and storage. Advances in Energy Materials: New Composites and Techniques for Future Energy Applications 239

  74. Spinelli P et al (2012) Plasmonic light trapping in thin-film Si solar cells. J Opt 14(2):024002

    Article  Google Scholar 

  75. Tang Z, Tress W, Inganäs O (2014) Light trapping in thin film organic solar cells. Mater Today 17(8):389–396

    Article  CAS  Google Scholar 

  76. Ouyang Z et al (2011) Nanoparticle-enhanced light trapping in thin-film silicon solar cells. Prog Photovoltaics Res Appl 19(8):917–926

    Article  CAS  Google Scholar 

  77. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Article  CAS  PubMed  Google Scholar 

  78. Becker C et al (2013) Polycrystalline silicon thin-film solar cells: Status and perspectives. Sol Energy Mater Sol Cells 119:112–123

    Article  CAS  Google Scholar 

  79. Ding Y et al (2020) Welded silver nanowire networks as high-performance transparent conductive electrodes: Welding techniques and device applications. Appl Mater Today 20:100634

    Article  Google Scholar 

  80. Wang L et al (2023) Stretchable conductors for stretchable field-effect transistors and functional circuits. Chem Soc Rev

  81. Alekseeva S, Nedrygailov II, Langhammer C (2019) Single particle plasmonics for materials science and single particle catalysis. ACS Photonics 6(6):1319–1330

    Article  CAS  Google Scholar 

  82. Ayivi RD et al (2023) Molecularly imprinted plasmonic sensors as nano-transducers: an effective approach for environmental monitoring applications. Chemosensors 11(3):203

    Article  CAS  Google Scholar 

  83. Zhan C et al (2023) Plasmon-mediated chemical reactions. Nature Reviews Methods Primers 3(1):12

    Article  CAS  Google Scholar 

  84. Gandhi MA et al (2019) Recent advances in plasmonic sensor-based fiber optic probes for biological applications. Appl Sci 9(5):949

    Article  CAS  Google Scholar 

  85. Elbanna A et al (2023) 2D material infrared photonics and plasmonics. ACS Nano 17(5):4134–4179

    Article  CAS  PubMed  Google Scholar 

  86. Akgönüllü S et al (2023) Plasmonic nanosensors for chemical warfare agents. sensing of deadly toxic chemical warfare agents, nerve agent simulants, and their toxicological aspects. Elsevier, pp 81–96

    Chapter  Google Scholar 

  87. Rahman MH et al (2023) Dual-function plasmonic device on photonic crystal fiber for near to mid-infrared regions. Optical Materials Express 13(9):2526–2540

    Article  CAS  Google Scholar 

  88. Li X et al (2007) Two-photon-induced three-dimensional optical data storage in CdS quantum-dot doped photopolymer. Appl Phys Lett 90(16)

  89. Chon JW et al (2004) Two-photon-induced photoenhancement of densely packed CdSe∕ ZnSe∕ ZnS nanocrystal solids and its application to multilayer optical data storage. Appl Phys Lett 85(23):5514–5516

    Article  CAS  Google Scholar 

  90. Maniloff ES, Johnson AE, Mossberg TW (1999) Spectral data storage using rare-earth-doped crystals. MRS Bull 24(9):46–50

    Article  CAS  Google Scholar 

  91. Lu Y et al (2014) Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photonics 8(1):32–36

    Article  CAS  Google Scholar 

  92. Li X et al (2013) Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci Rep 3(1):2819

    Article  PubMed  PubMed Central  Google Scholar 

  93. Liu Y, Mills EN, Composto RJ (2009) Tuning optical properties of gold nanorods in polymer films through thermal reshaping. J Mater Chem 19(18):2704–2709

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors M. Aftab and Tahir Iqbal made equal contributions in editing, collecting, arranging, analyzing data, information, and findings. M. Salim Mansha and M. Farooq assisted in revision of the article and incorporated additional applications related to the subject.

Corresponding author

Correspondence to Muhammad Aftab.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aftab, M., Mansha, M.S., Iqbal, T. et al. Surface Plasmon Excitation: Theory, Configurations, and Applications. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02095-2

Keywords

Navigation