Skip to main content
Log in

Design and Modelling of Surface Plasmon Resonance Biosensor Employing BaTiO3 and Graphene Nanostructure for Detection of SARS-CoV-2 Virus

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The present article exhibits a comprehensive analysis of surface plasmon resonance (SPR)-based biosensor for real-time and label-free detection of the novel SARS-CoV-2 virus. The proposed SPR sensor is based on the Kretschmann geometry, which is designed by using CaF2 prism, titanium oxide (Ti02), Silver (Ag), barium titanate (BaTiO3), graphene, and thiol-tethered ssDNA layer as a ligand for the SARS-CoV-2 virus. The transfer matrix method is employed to investigate the angular reflectance characteristics. The thickness of different layers and the number of layers are judiciously optimized. The enhancement in the sensitivity of the proposed sensor is studied by considering different arrangements of the layers. It is revealed that with a monolayer of BaTiO3 and bilayer of graphene, the sensor bestows an optimum sensitivity of 433.63 deg./RIU, figure of merit of 136.79 1/RIU, detection accuracy of 0.331 \({Deg.}^{-1}\), and detection limit in the order of \({10}^{-5}\). Apart from this, electric field enhancement factor is studied for different concentration of SARS-CoV-2 virus. The notable sensing performances indicate that the proposed SPR sensor can be a potential candidate to pave a new path for detecting SARS-CoV-2, based on the hybrid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data utilization is obtained through numerical simulation and few of optimized data from proper literature. All have been provided in the strucuture descritpion and reference section.

References

  1. Wu D, Wu T, Liu Q, Yang Z (2020) The SARS-CoV-2 outbreak: What we know. Int J Infect Dis 94:44–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rota PA et al (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399

    Article  CAS  PubMed  Google Scholar 

  3. Giri B, Pandey S, Shrestha R, Pokharel K, Ligler FS, Neupane BB (2021) Review of analytical performance of COVID-19 detection methods. Anal Bioanal Chem 413:35–48

    Article  CAS  PubMed  Google Scholar 

  4. Zehnbauer B (2021) Diagnostics in the Time of Coronavirus Disease, (COVID-19): Challenges and Opportunities. J Mol Diagn 23:1–2

    Article  CAS  PubMed  Google Scholar 

  5. Sahajpal NS et al (2020) Proposal of RT-PCR–Based Mass Population Screening for Severe Acute Respiratory Syndrome Coronavirus 2. J Mol Diagn 22:1294–1299

    Article  CAS  PubMed  Google Scholar 

  6. Lukose J, Chidangil S, George SD (2021) Optical technologies for the detection of viruses like COVID-19: progress and prospects. Biosens Bioelectron 178:113004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahmed AM, Shaban M (2020) Highly sensitive Au–Fe2O3–Au and Fe2O3–Au–Fe2O3 biosensors utilizing strong surface plasmon resonance. Appl Phys B 126(4):1–10

    Article  Google Scholar 

  8. Bijalwan A, Rastogi V (2018) Gold–aluminum-based surface plasmon resonance sensor with a high quality factor and figure of merit for the detection of hemoglobin. Appl Opt 57(31):9230–9237

    Article  CAS  PubMed  Google Scholar 

  9. Peng X et al (2020) Promising near-infrared plasmonic biosensor employed for specific detection of SARS-CoV-2 and its spike glycoprotein. New J Phys 22(10)

    Article  CAS  Google Scholar 

  10. Prabowo BA, Wang RY, Secario MK et al (2017) Rapid detection and quantifcation of Enterovirus by a portable surface plasmon resonance biosensor. Biosens Bioelectron 92:186–191

    Article  CAS  PubMed  Google Scholar 

  11. Alagdar M, Yousif B, Areed NF et al (2020) Improved the quality factor and sensitivity of a surface plasmon resonance sensor with transition metal dichalcogenide 2D nanomaterials. J Nanopart Res 22:189

    Article  CAS  Google Scholar 

  12. Agarwal S, Giri P, Prajapati YK, Chakrabarti P (2016) Effect of surface roughness on the performance of opticalSPR sensor for sucrose detection: Fabrication, characterization, and simulation study. IEEE Sens J 16:8865–8873

    Article  CAS  Google Scholar 

  13. Sharma NK (2012) Performances of different metals in optical fibre-based surface plasmon resonance sensor. Pramana 78(3):417–427

    Article  CAS  Google Scholar 

  14. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

    Article  CAS  PubMed  Google Scholar 

  15. Srivastava SK, Verma R, Gupta BD (2016) Theoretical modeling of a self-referenced dual mode SPR sensor utilizing indium tin oxide film. Opt Commun 369:131–137

    Article  CAS  Google Scholar 

  16. Rahman MM, Rana MM, Rahman MS, Anower MS, Mollah MA, Paul AK (2020) Sensitivity enhancement of SPR biosensors employing heterostructure of PtSe2 and 2D materials. Opt Mater 107:110123

    Article  CAS  Google Scholar 

  17. Dai Y et al (2018) Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (SPR) sensing. Opt Commun 416:2017–2019

    Article  Google Scholar 

  18. Bonaccorso F et al (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611–622

    Article  CAS  Google Scholar 

  19. Han L et al (2020) Highly sensitive spr sensor based on Ag-ITO-BlueP/TMDCs-graphene heterostructure. Plasmonics 15(5):1489–1498

    Article  CAS  Google Scholar 

  20. Lee J-H, Park S-J, Choi J-W (2019) Electrical property of graphene and its application to electrochemical biosensing. Nanomaterials 9(2):297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Panda A, Pukhrambam PD, Keiser G (2020) Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection. Appl Phys A 126(3):153

    Article  CAS  Google Scholar 

  22. Panda A, Pukhrambam PD (2022) Modeling of High-Performance SPR Refractive Index Sensor Employing Novel 2D Materials for detection of Malaria Pathogens. IEEE Trans Nanobiosci 21(2):312–319

    Article  CAS  Google Scholar 

  23. Panda A, Pukhrambam PD (2022) Design and modelling of reconfigurable surface plasmon resonance refractive index sensor employing graphene and Sb2S3 for detection of dengue virus. Physica B 638:413965

  24. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F (2020) Structural basis of receptor recognition by SARS-CoV-2. Nature 581:221–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qiu G (2020) Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 14(5):5268–5277

    Article  CAS  PubMed  Google Scholar 

  26. Alafeef M, Dighe K, Moitra P, Pan D (2020) Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano 14(12):17028–17045

    Article  CAS  PubMed  Google Scholar 

  27. Hakami J et al (2021) Performance enhancement of surface plasmon resonance sensor based on Ag-TiO2-MAPbX3-graphene for the detection of glucose in water. Opt Quant Electron 53:164

    Article  CAS  Google Scholar 

  28. Mostufa S et al (2022) Highly Sensitive TiO2/Au/Graphene Layer-Based Surface Plasmon Resonance Biosensor for Cancer Detection. Biosensors 12(8):603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Malitson IH (1963) A redetermination of some optical properties of calcium fluoride. Appl Opt 2:1103

    Article  CAS  Google Scholar 

  30. Aouani H et al (2009) Crucial role of the adhesion layer on the plasmonic fluorescence enhancement. ACS Nano 3(7):2043–2048

    Article  CAS  PubMed  Google Scholar 

  31. Wemple SH, Didomenico M, Camlibel I (1968) Dielectric and optical properties of melt-grown BaTiO3. J Phys Chem Solids 29:1797–1803

    Article  Google Scholar 

  32. Han L, Zhao X, Huang T, Ding H, Wu C (2019) Comprehensive study of phase-sensitive SPR sensor based on metal–ITO hybrid multilayer. Plasmonics 14(6):1743–1750

    Article  CAS  Google Scholar 

  33. Kumar R, Kushwaha AS, Srivastava M, Mishra H, Srivastava SK (2018) “Enhancement in sensitivity of graphene-based zinc 589 oxide assisted bimetallic surface plasmon resonance (SPR) biosensor. Appl Phys A 124(3):235

    Article  Google Scholar 

  34. Gray D, Case-Green S, Fell T, Dobson P, Southern E (1997) Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array. Langmuir 13(10):2833–2842

    Article  CAS  Google Scholar 

  35. Schreiber B, Wacinski C, Chiarello R (2013) Index of refraction as a quality control metric for liquids in pharmaceutical manufacturing. Pharm Eng 33(2)

  36. Pal S, Prajapati YK, Saini J (2020) Infuence of graphene’s chemical potential on SPR biosensor using ZnO for DNA hybridization. Opt Rev 27(1):57–64

    Article  CAS  Google Scholar 

  37. Nurrohman DT, Chiu N-F (2020) Surface Plasmon Resonance Biosensor Performance Analysis on 2D Material Based on Graphene and Transition Metal Dichalcogenides. ECS J Solid State Sci Technol 9:115023

    Article  CAS  Google Scholar 

  38. Panda A, Pukrambam PD, Simatupang JW (2022) Design of a Highly Sensitive Self-Reference Tamm-Plasmon-Polariton Sensor Employing Ti3C2Tx MXene. In IEEE Sens J 22(13):12719–12727

    Article  CAS  Google Scholar 

  39. Sahoo R, Nayak S, Feng Wu, Panda A (2023) Investigation of Highly Sensitive Surface Plasmon Resonance Biosensor Employing Black Phosphorous and Graphene Hybrid Structure. Plasmonics 18:1267–1275

    Article  CAS  Google Scholar 

  40. Mostufa S, Paul AK, Chakrabarti K (2021) Detection of hemoglobin in blood and urine glucose level samples using a graphene-coated SPR based biosensor. OSA Contin 4(8):2164–2176

    Article  CAS  Google Scholar 

  41. Karki B et al (2022) Sensitivity enhancement of a graphene, zinc sulfide-based surface plasmon resonance biosensor with an ag metal configuration in the visible region. J Computat Electron 21:445–452

    Article  CAS  Google Scholar 

  42. Kushwaha AS, Kumar A, Kumar R, Srivastava SK (2018) A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity. Photonics Nanostruct Fundam 31:99–106

    Article  Google Scholar 

  43. Vasimalla Y, Pradhan HS, Pandya RJ (2020) SPR performance enhancement for DNA hybridization employing black phosphorus, silver, and silicon. Appl Opt 59(24):7299–7307

    Article  CAS  PubMed  Google Scholar 

  44. Singh Y, Paswan MK, Raghuwanshi SK (2021) Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with bi-layer of gold for chemical sensing. Plasmonics 16:1781–1790

    Article  CAS  Google Scholar 

  45. Kumar R, Pal S, Verma A et al (2020) Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene. Superlattices Microstruct 145:106591

    Article  CAS  Google Scholar 

  46. Singh S, Sharma AK, Lohia P et al (2022) Design and modelling of high-performance surface plasmon resonance refractive index sensor using BaTiO3, MXene and nickel hybrid nanostructure. Plasmonics 17:2049–2062

    Article  CAS  Google Scholar 

  47. Schreiber B, Wacinski C, Chiarello R (2013) Index of refraction as a quality control metric for liquids in pharmaceutical manufacturing. Pharm Eng 33(2):1–7

    Google Scholar 

  48. Pal S et al (2020) Influence of grapheme’chemical potential on SPR biosensor using ZnO for DNA hybridization. Opt Rev 27:57–64

    Article  CAS  Google Scholar 

  49. Orooji Y et al (2021) An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplifcation assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nanomicro let 13(1):1–30

    CAS  Google Scholar 

  50. Maharana PK, Jha R, Padhy P (2015) On the electric field enhancement and performance of SPR gas sensorbased on graphene for visible and near infrared. SensActuators B 207:117–122

    Article  CAS  Google Scholar 

  51. Jeeban Kumar Nayak (2017) Pradeep Kumar Maharana and Rajan Jha, Dielectric over-layer assisted graphene, its oxide and MoS2-based fibre optic sensor with high field enhancement. J Phys D Appl Phys 50(40):405112

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the Researchers Supporting Project number (RSPD2024R708), King Saud University, Riyadh, Saudi Arabia for funding this research work.

Author information

Authors and Affiliations

Authors

Contributions

K.M.A has involved transfer matrix method; SM has involved in data collection and its validation; DV has formulated the entire work and methodology; SR has supported and involved the writing part of part of article.

Corresponding author

Correspondence to Vigneswaran Dhasarathan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaaudeen, K.M., Manoharadas, S., Dhasarathan, V. et al. Design and Modelling of Surface Plasmon Resonance Biosensor Employing BaTiO3 and Graphene Nanostructure for Detection of SARS-CoV-2 Virus. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02322-4

Keywords

Navigation