Skip to main content
Log in

A Laser Structure Based on Metal-Dielectric-Metal Plasmonic Nanocavity

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A subwavelength plasmonic laser structure based on a metal-dielectric-metal nanocavity is proposed and numerically simulated by using the finite difference time domain method with perfectly matched layer absorbing boundary condition. The nanocavity model and gain analysis are respectively given. The simulation results show that the losses within the nanocavity (including surface plasmon losses) can be compensated by the gain material and the threshold gain of the laser is about 1.5 × 103 cm−1 with the peak wavelength around 1,550 nm. The new device would be an important step toward a fully integrated surface plasmon circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raether H (1998) Surface plasmon on smooth and rough surfaces and gratings. Springer, Berlin

    Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  3. Berini P (2000) Plasmon–polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys Rev B 61:10484–10503

    Article  CAS  Google Scholar 

  4. Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon–polariton guiding by subwavelength metal grooves. Phys Rev Lett 95:046802

    Article  Google Scholar 

  5. Liu L, Han Z, He S (2005) Novel surface plasmon waveguide for high integration. Opt Express 13:6645–6650

    Article  Google Scholar 

  6. Moreno E, Rodrigo SG, Bozhevolnyi SI, Martin-Moreno L, Garcia-Vidal FJ (2008) Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys Rev Lett 100:023901

    Article  Google Scholar 

  7. Boltasseva A, Volkov VS, Nielsen RB, Moreno E, Rodrigo SG, Bozhevolnyi SI (2008) Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelength. Opt Express 16:5252–5260

    Article  Google Scholar 

  8. Veronis G, Yu Z, Kocabas SE, Miller DAB, Brongersma ML, Fan S (2009) Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale. Chin Opt Lett 7:302–308

    Article  CAS  Google Scholar 

  9. Neutens P, Dorpe PV, Vlaminck ID, Lagae L, Borghs G (2009) Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nature Photonics 3:283–286

    Article  CAS  Google Scholar 

  10. Dionne JA, Sweatlock LA, Atwater HA (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength scale localization. Phys Rev B 73:035407

    Article  Google Scholar 

  11. Wang TB, Wen XW, Yin CP, Wang HZ (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17:24096–24101

    Article  CAS  Google Scholar 

  12. Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, Lv Y, Lin X, Yao H (2005) Surface plasmon polariton propagation and combination in Y-shaped metallic channels. Opt Express 13(26):10795–10800

    Article  Google Scholar 

  13. Zhao H, Huang X, Huang J (2008) Novel optical directional coupler based on surface plasmon polaritons. Physica E 40(10):3025–3029

    Article  Google Scholar 

  14. Bozhevolnyi S, Volkov V, Devaus E, Laluet J, Ebbesen T (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  Google Scholar 

  15. Han Z, Liu L, Forsberg E, He S (2007) Surface plasmon Bragg grating formed in metal-insulator-metal waveguides. IEEE Photon Technol Lett 19(2):91–93

    Article  Google Scholar 

  16. Wang B, Wang GP (2005) Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl Phys Lett 87:013107

    Article  Google Scholar 

  17. Park J, Kim H, Lee B (2008) High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Opt Express 16:413–425

    Article  Google Scholar 

  18. Zhang Q, Huang XG, Lin XS, Tao J, Jin XP (2009) A subwavelength coupler-type MIM optical filter. Opt Express 17(9):7549–7555

    Article  CAS  Google Scholar 

  19. Matsuzaki Y, Okamoto T, Haraguchi M, Fukui M, Nakagaki M (2008) Characteristics of gap plasmon waveguide with stub structures. Opt Express 16:16314–16325

    Article  Google Scholar 

  20. Tao J, Huang XG, Lin XS, Chen JH, Zhang Q, Jin XP (2010) Systematical research on characteristics of double-side teeth-shaped nano-plasmonic waveguide filters. J Opt Soc Am B 27:323–327

    Article  CAS  Google Scholar 

  21. Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33(23):2874–2876

    Article  Google Scholar 

  22. Tao J, Huang XG, Zhu JH (2010) A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators. Opt Express 18(11):11111–11116

    Article  Google Scholar 

  23. Bergman DJ, Stockman MI (2003) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 90:027402

    Article  Google Scholar 

  24. Lawandy NM (2004) Localized surface plasmon singularities in amplifying media. Appl Phys Lett 85:5040

    Article  CAS  Google Scholar 

  25. Seidel J, Grafstrom S, Eng L (2005) Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys Rev Lett 94:177401

    Article  CAS  Google Scholar 

  26. Noginov MA, Zhu G, Bahoura M, Adegoke J, Small CE, Ritzo BA, Drachev VP, Shalaev VM (2006) Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt Lett 31:3022

    Article  CAS  Google Scholar 

  27. Nezhad MP, Tetz K, Fainman Y (2004) Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt Express 12(17):4072–4079

    Article  Google Scholar 

  28. Maier SA (2006) Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polaritons gap waveguides. Opt Commun 258:295–299

    Article  CAS  Google Scholar 

  29. Citrin DS (2006) Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium. Opt Lett 31:98

    Article  CAS  Google Scholar 

  30. Boltasseva A, Bozhevolnyi SI, Nikolajsen T, Leosson K (2006) Compact Bragg gratings for long-range surface plasmon polaritons. J Lightwave Technol 24:912–918

    Article  Google Scholar 

  31. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev 6:4370–4379

    Article  CAS  Google Scholar 

  32. Fujita M, Takahashi S, Tanaka Y, Asano T, Noda S (2005) Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 308:1296–1298

    Article  CAS  Google Scholar 

  33. Painter O, Lee RK, Scherer A, Yariv A, O’Brien JD, Dapkus PD, Kim I (1999) Two-dimensional photonic band-gap defect mode laser. Science 284(5421):1819–1821

    Article  CAS  Google Scholar 

  34. Zhou WD, Sabarinathan J, Kochman B, Berg E, Qasaimeh O, Pang S, Bhattacharya P (2000) Electrically injected single-defect photonic bandgap surface-emitting laser at room temperature. Electron Lett 36(18):1041–1042

    Article  Google Scholar 

  35. Fujita M, Teshima K, Baba T (2001) Low-threshold continuous-wave lasing in photopumped GaInAsP microdisk lasers. Jpn J Appl Phys 40:875–877

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (grant no.61077038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Guang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J.H., Huang, X.G. & Mei, X. A Laser Structure Based on Metal-Dielectric-Metal Plasmonic Nanocavity. Plasmonics 7, 93–98 (2012). https://doi.org/10.1007/s11468-011-9280-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9280-x

Keywords

Navigation