Skip to main content
Log in

Tunable Extraordinary Optical Transmission in a Metal Film Perforated with Two-Level Subwavelength Cylindrical Holes

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a novel plasmonic metal structure composed of a silver film perforated with a two-dimensional square array of two-level cylindrical holes on a silica substrate. The transmission properties of this structure are theoretically calculated by the finite-difference time-domain (FDTD) method. Double-enhanced transmission peaks are achieved in the visible and infrared regions, which mainly originate from the excitation of localized surface plasmon resonances (LSPRs), the hybridization of plasmon modes, and the optical cavity mode formed in the holes. The enhanced transmission behaviors can be effectively tailored by changing the geometrical parameters and dielectric materials filled in the holes. These findings indicate that our proposed structure has potential applications in highly integrated optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EOT:

Enhanced optical transmission

FDTD:

Finite-difference time-domain

SPPs:

Surface plasmon polaritons

LSPRs:

Localized surface plasmon resonances

References

  1. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  2. Liu JQ, He MD, Zhai X, Wang LL, Wen S, Chen L, Shao Z, Wan Q, Zhou BS, Yao J (2009) Tailoring optical transmission via the arrangement of compound subwavelength hole arrays. Opt Express 17:1859–1864

    Article  CAS  Google Scholar 

  3. Steele JM, Gagnidze I, Wiele SM (2010) Efficient extraction of fluorescence emission utilizing multiple surface plasmon modes from gold wire gratings. Plasmonics 5:319–324

    Article  CAS  Google Scholar 

  4. Zhu J, Li J, Zhao J (2011) Tuning the dipolar plasmon hybridization of multishell metal-dielectric nanostructure: gold nanosphere in a gold nanoshell. Plasmonics 6:527–534

    Article  CAS  Google Scholar 

  5. Wang M, Cao M, Chen X, Gu N (2011) Subradiant plasmon modes in multilayer metal–dielectric nanoshells. J Phys Chem C 115:20920–20925

    Article  CAS  Google Scholar 

  6. Qing GD, Krishnan S, Li PZ, Hilmi VD, Chan HK, Xiao WS (2012) A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared. Appl Phys Lett 101:181112

    Article  Google Scholar 

  7. Degiron A, Ebbesen TW (2005) The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J Opt A: Pure Appl Opt 7:S90–S96

    Article  Google Scholar 

  8. Najiminaini M, Vasefi F, Kaminska B, Carson JJ (2013) A three-dimensional plasmonic nanostructure with extraordinary optical transmission. Plasmonics 8:217–224

    Article  CAS  Google Scholar 

  9. Lin L, Roberts A (2011) Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances. Opt Express 19:2626–2633

    Article  CAS  Google Scholar 

  10. Ni B, Huang L, Ding J, Li G, Chen X, Lu W (2013) The collective property of enhanced transmission through compound metal periodic arrays of subwavelength apertures. Opt Commun 298–299:237–241

    Article  Google Scholar 

  11. Gordon R, Brolo AG, McKinnon A, Rajora A, Leathem B, Kavanagh KL (2004) Strong polarization in the optical transmission through elliptical nanohole arrays. Phys Rev Lett 92:037401

    Article  CAS  Google Scholar 

  12. Van der Molen KL, Koerkamp KK, Enoch S, Segerink FB, Van Hulst NF, Kuipers L (2005) Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory. Phys Rev B 72:045421

    Article  Google Scholar 

  13. Wu S, Zhang Z, Zhang Y, Zhang K, Zhou L, Zhang X, Zhu Y (2013) Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes. Phys Rev Lett 110:207401

    Article  Google Scholar 

  14. He RJ, Zhou XL, Fu YQ, Zhang YW (2011) Near-field optical experimental investigation of gold nanohole array. Plasmonics 6:171–176

    Article  CAS  Google Scholar 

  15. Bayindir M, Aydin K, Ozbay E, Markos P, Soukoulis CM (2002) Transmission properties of composite metamaterials in free space. Appl Phys Lett 81:120–122

    Article  CAS  Google Scholar 

  16. Yuan Y, Bingham C, Tyler T, Palit S, Hand TH, Padilla WJ, Smith DR, Jokerst NM, Cummer SA (2008) Dual-band planar electric metamaterial in the terahertz regime. Opt Express 16:9746–9752

    Article  Google Scholar 

  17. Prodan E, Radlo C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  18. Zhu J, Li JJ, Zhao JW (2013) Frequency-dependent polarization properties of local electric field in gold–dielectric multi-nanoshells. Plasmonics 8:417–424

    Article  CAS  Google Scholar 

  19. Bora M, Fasenfest BJ, Behymer EM, Chang AS, Nguyen HT, Britten JA, Larson CC, Chan JW, Miles RR, Bond TC (2010) Plasmon resonant cavities in vertical nanowire arrays. Nano Lett 10:2832–2837

    Article  CAS  Google Scholar 

  20. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  21. Palik ED (ed) (1982) Handbook of optical constants insolids. Academic, Boston

    Google Scholar 

  22. Liu GQ, Hu Y, Liu ZQ, Chen YH, Cai ZJ, Zhang XN, Huang K (2014) Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by finite-difference time-domain method. Phys Chem Chem Phys 16:4320

    Article  CAS  Google Scholar 

  23. Artar A, Yanik AA, Altug H (2011) Multispectral plasmon induced transparency in coupled meta-atoms. Nano Lett 11:1685–1689

    Article  CAS  Google Scholar 

  24. Wang Y, Qin Y, Zhang Z (2013) Extraordinary optical transmission property of X-Shaped plasmonic nanohole arrays. Plasmonics 9:203–207

  25. Chern RL, Liu XX, Chang CC (2007) Particle plasmons of metal nanospheres: application of multiple scattering approach. Phys Rev E 76:016609

    Article  Google Scholar 

  26. Wang LN, Xu BZ, Bai WL, Zhang J (2012) Multiple surface plasmon resonances in compound structure with metallic nanoparticle and nanohole arrays. Plasmonics 7:659–663

    Article  CAS  Google Scholar 

  27. Huang XR, Peng RW, Wang Z, Gao F, Jiang SS (2007) Charge-oscillation-induced light transmission through subwavelength slits and holes. Phys Rev A 76:035802

    Article  Google Scholar 

  28. Manjavacas A, de Abajo FJG (2009) Coupling of gap plasmons in multi-wire waveguides. Opt Express 17:19401–19413

    Article  CAS  Google Scholar 

  29. Liu Z, Liu G, Liu X, Huang K, Chen Y, Hu Y, Fu G (2013) Tunable plasmon-induced transparency of double continuous metal films sandwiched with a plasmonic array. Plasmonics 8:1285–1292

    Article  CAS  Google Scholar 

  30. Liu Z, Liu G, Huang K, Chen Y, Hu Y, Zhang X, Cai Z (2013) Enhanced optical transmission of a continuous metal film with double metal cylinder arrays. IEEE Photonic Tech L 25:1157–1160

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 11004088 and 11264017), Scientific and Technological Projects of Jiangxi Provincial Education Department (Nos. GJJ13234, GJJ14253 and GJJ13210), and Natural Science Foundation of Jiangxi Province (Nos. 20122BAB202006, 20112BBE50033 and 20133ACE50006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiqiang Liu or Zhengqi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, G., Hu, Y. et al. Tunable Extraordinary Optical Transmission in a Metal Film Perforated with Two-Level Subwavelength Cylindrical Holes. Plasmonics 9, 1149–1153 (2014). https://doi.org/10.1007/s11468-014-9725-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9725-0

Keywords

Navigation