Skip to main content
Log in

Frequency-Dependent Polarization Properties of Local Electric Field in Gold–Dielectric Multi-Nanoshells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The polarization properties of the local electric field in the gold–dielectric–gold multilayer nanoshells are investigated by theoretical calculation based on the quasi-static approximation. The calculation results show that the complete polarized incident light does not only stimulate the same directional polarized local electric field. The polarized angle of the local field may changes from 0° to 90° as the wavelength and location are changed. The distributions of local field polarization are different in dielectric layer or gold shell and display different features in different plasmonic hybridization mode. As the incident wavelength is increased, the hot spot of polarizing angle moves monotonously in the middle dielectric shell, whereas moves nonmonotonously in the gold shell and surrounding environment. In the gold shell, the gap between hot spots of polarizing angle may occur at the resonance frequency. However, the hot spots of polarizing angle always occur at the resonance frequencies in the surrounding environment. These interesting results show that the single-molecule detection based on metal nanostructure induced surface-enhanced Raman scattering and surface enhanced fluorescence could be optimized by adjusting the incident light polarization and frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deutsch B, Hillenbrand R, Novotny L (2010) Visualizing the optical interaction tensor of a gold nanoparticle pair. Nano Lett 10:652–656

    Article  CAS  Google Scholar 

  2. Neacsu CC, Berweger S, Olmon RL, Saraf LV, Ropers C, Raschke MB (2010) Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett 10:592–596

    Article  CAS  Google Scholar 

  3. Fang ZY, Lu YW, Fan LR, Lin CF, Zhu X (2010) Surface plasmon polariton enhancement in silver nanowire–nanoantenna structure. Plasmonics 5:57–62

    Article  CAS  Google Scholar 

  4. Thomas M, Greffet JJ, Carminati R, Arias-Gonzalez JR (2004) Single-molecule spontaneous emission close to absorbing nanostructures. Appl Phys Lett 85:3863–3865

    Article  CAS  Google Scholar 

  5. Sick B, Hecht B, Novotny L (2000) Orientational imaging of single molecules by annular illumination. Phys Rev Lett 85:4482–4485

    Article  CAS  Google Scholar 

  6. Shan Y, Xu JJ, Chen HY (2009) Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS:Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chem Commun 45:905–907

    Article  Google Scholar 

  7. Tovmachenko OG, Graf C, Heuvel DJ, Blaaderen A, Gerritsen HC (2006) Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv Mater 18:91–95

    Article  CAS  Google Scholar 

  8. Liu M, Guyot-Sionnest P, Lee TW, Gray SK (2007) Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations. Phys Rev B 76:235428

    Article  Google Scholar 

  9. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298:1–24

    Article  CAS  Google Scholar 

  10. Deeb C, Bachelot R, Plain J, Baudrion AL, Jradi S, Bouhelier A, Soppera O, Jain PK, Huang L, Ecoffet C, Balan L, Royer P (2010) Quantitative analysis of localized surface plasmons based on molecular probing. ACS Nano 4:4579–4586

    Article  CAS  Google Scholar 

  11. Carminati R, Greffet JJ, Henkel C, Vigoureux JM (2006) Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle. Opt Commun 261:368–375

    Article  CAS  Google Scholar 

  12. Bharadwaj P, Novotny L (2007) Spectral dependence of single molecule fluorescence enhancement. Opt Express 15:14266

    Article  CAS  Google Scholar 

  13. Deutsch B, Hillenbrand R, Novotny L (2010) Visualizing the optical interaction tensor of a gold nanoparticle pair. Nano Lett 10:652–656

    Article  CAS  Google Scholar 

  14. McLellan JM, Li ZY, Siekkinen AR, Xia Y (2007) The SERS activity of a supported ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett 7:1013–1017

    Article  CAS  Google Scholar 

  15. Chen SY, Mock JJ, Hill RT, Chilkoti A, Smith DR, Lazarides AA (2010) Gold nanoparticles on polarizable surfaces as raman scattering antennas. ACS Nano 4:6535–6546

    Article  CAS  Google Scholar 

  16. Fang ZY, Cai JY, Yan ZB, Nordlander P, Halas NJ, Zhu X (2011) Removing a wedge from a metallic nanodisk reveals a fano resonance. Nano Lett 11:4475–4479

    Article  CAS  Google Scholar 

  17. Fang ZY, Peng Q, Song WT, Hao FH, Wang J, Nordlander P, Zhu X (2011) Plasmonic focusing in symmetry broken nanocorrals. Nano Lett 11:893–897

    Article  CAS  Google Scholar 

  18. Fang ZY, Lin CF, Ma RM, Huang S, Zhu X (2010) Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano 4:75–82

    Article  CAS  Google Scholar 

  19. Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378–7383

    Article  CAS  Google Scholar 

  20. Hu Y, Fleming RC, Drezek RA (2008) Optical properties of goldsilica-gold multilayer nanoshells. Opt Express 16:19579–19591

    Article  CAS  Google Scholar 

  21. Hu Y, Noelck SJ, Drezek RA (2010) Symmetry breaking in gold-silica-gold multilayer nanoshells. ACS Nano 4:1521–1528

    Article  CAS  Google Scholar 

  22. Qian J, Wang WD, Li YD, Xu JJ, Sun Q (2012) Optical extinction properties of perforated gold-silica-gold multilayer nanoshells. J Phys Chem C 116:10349–10355

    Article  CAS  Google Scholar 

  23. Perenboom JAAJ, Wyder P, Meier F (1981) Electronic properties of small metallic particles. Phys Rep 78:173–292

    Article  CAS  Google Scholar 

  24. David C, Richter M, Knorr A, Weidinger IM, Hildebrandt P (2010) Image dipoles approach to the local field enhancement in nanostructured Ag-Au hybrid devices. J Chem Phys 132:024712

    Article  Google Scholar 

  25. Zhu J, Ren YJ, Zhao SM, Zhao JW (2012) The effect of inserted gold nanosphere on the local field enhancement of gold nanoshell. Mater Chem Phys 133:1060–1065

    Article  CAS  Google Scholar 

  26. Zhu J, Li JJ, Zhao JW (2011) Tuning the dipolar plasmon hybridization of multishell metal-dielectric nanostructure: gold nanosphere in a gold nanoshell. Plasmonics 6:527–534

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University under Grant No. NCET-10-0688 and the Fundamental Research Funds for the Central Universities, and the National Natural Science Foundation of China under grant no. 11174232, 61178075, and 81101122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Wu Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Li, JJ. & Zhao, JW. Frequency-Dependent Polarization Properties of Local Electric Field in Gold–Dielectric Multi-Nanoshells. Plasmonics 8, 417–424 (2013). https://doi.org/10.1007/s11468-012-9406-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9406-9

Keywords

Navigation