Skip to main content
Log in

Tuning the Dipolar Plasmon Hybridization of Multishell Metal-Dielectric Nanostructure: Gold Nanosphere in a Gold Nanoshell

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Because of the interaction between dipole resonances of the inner gold sphere and the outer gold shell, gold-dielectric-gold multishells with sub-50 nm diameter may at most have three hybridization modes of surface plasmon resonance (SPR). Theoretical calculations based on quasi-static theory indicate that there are blending and splitting of SPR bands in the absorption spectra, which makes the number of absorption peak tunable by changing the radius of inserted gold sphere, thickness of gold shell, dielectric constant of middle dielectric shell or outer environment. The two absorption peaks at longer wavelength, which correspond to the hybridization from the bonding shell plasmon and the sphere plasmon, are usually intense and well tunable. The absorption peak at shorter wavelength, which corresponds to the symmetric coupling between the anti-bonding shell plasmon and the sphere plasmon, is relative weak and only occurs with large dielectric constant of the middle shell, small dielectric constant of the outer surrounding, large inner radius of the gold shell, and small radius of the inner gold sphere. Furthermore, the physical origin of these plasmon hybridizations in gold-dielectric-gold multishells nanostructure has also been illuminated by analyzing the local electric field distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Larsson EM, Alegret J, Käll M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7:1256–1263

    Article  CAS  Google Scholar 

  2. Harris N, Ford MJ, Cortie MB (2006) Optimization of plasmonic heating by gold nanospheres and nanoshells. J Phys Chem B 110:10701–10707

    Article  CAS  Google Scholar 

  3. Pu Y, Grange R, Hsieh CL, Psaltis D (2010) Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett 104:207402

    Article  Google Scholar 

  4. Zhu J (2008) Double optical limiting in gold nanoshell: tuning from visible to infrared region by shell thickness. Appl Opt 47:5848–5852

    Article  CAS  Google Scholar 

  5. Pinchuk A (2003) Optical bistability in nonlinear composites with coated ellipsoidal nanoparticles. J Phys D Appl Phys 36:460–464

    Article  CAS  Google Scholar 

  6. Wang H, Brandl DW, Nordlander P, Halas NJ (2007) Plasmonic nanostructures: artificial molecules. Acc Chem Res 40:53–62

    Article  Google Scholar 

  7. Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988

    Article  CAS  Google Scholar 

  8. Prodan E, Radlo C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  9. Major KJ, De C, Obare SO (2009) Recent advances in the synthesis of plasmonic bimetallic nanoparticles. Plasmonics 4:61–78

    Article  CAS  Google Scholar 

  10. Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378–7383

    Article  CAS  Google Scholar 

  11. Wu DJ, Liu XJ (2009) Tunable near-infrared optical properties of three-layered gold–silica–gold nanoparticles. Appl Phys B 97:193–197

    Article  CAS  Google Scholar 

  12. Hu Y, Fleming RC, Drezek RA (2008) Optical properties of gold-silica-gold multilayer nanoshells. Opt Express 16:19579–19591

    Article  CAS  Google Scholar 

  13. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866

    Article  CAS  Google Scholar 

  14. Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Del Fatti N, Vallée F, Brevet PF (2008) Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys Rev Lett 101:197401

    Article  CAS  Google Scholar 

  15. Ruan Z, Fan S (2010) Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle. J Phys Chem C 114:7324–7329

    Article  CAS  Google Scholar 

  16. Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett 10:2694–2701

    Article  CAS  Google Scholar 

  17. Xu HX (2005) Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field. Phys Rev B 72:073405

    Article  Google Scholar 

  18. Kodali AK, Schulmerich MV, Palekar R, Llora X, Bhargava R (2010) Optimized nanospherical layered alternating metal-dielectric probes for optical sensing. Opt Express 18:23302–23313

    Article  CAS  Google Scholar 

  19. Schelm S, Smith GB (2005) Internal electric field densities of metal nanoshells. J Phys Chem B 109:1689–1694

    Article  CAS  Google Scholar 

  20. Perenboom JAAJ, Wyder P, Meier F (1981) Electronic properties of small metallic particles. Phys Rep 78:173–292

    Article  CAS  Google Scholar 

  21. Peña-Rodríguez O, Pal U (2010) Geometrical tunability of linear optical response of silica-gold double concentric nanoshells. J Phys Chem C 114:4414–4417

    Article  Google Scholar 

  22. Hu Y, Noelck SJ, Drezek RA (2010) Symmetry breaking in gold-silica-gold multilayer nanoshells. ACS Nano 4:1521–1528

    Article  CAS  Google Scholar 

  23. Haus JW, Zhou HS, Takami S, Hirasawa M, Honma I, Komiyama H (1993) Enhanced optical properties of metal-coated nanoparticles. J Appl Phys 73:1043–1048

    Article  CAS  Google Scholar 

  24. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B Opt Phys 16:1824–1832

    Article  CAS  Google Scholar 

  25. Martin OJF (2003) Plasmon resonances in nanowires with a non-regular cross-section. Top Appl Phys 88:183–210

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant No. 10804091, the National High-tech Research and Development Program (863 Program) of China under grant No. 2009AA04Z314 and Program for New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Jun-wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jian, Z., Jian-jun, L. & Jun-wu, Z. Tuning the Dipolar Plasmon Hybridization of Multishell Metal-Dielectric Nanostructure: Gold Nanosphere in a Gold Nanoshell. Plasmonics 6, 527–534 (2011). https://doi.org/10.1007/s11468-011-9232-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9232-5

Keywords

Navigation