Skip to main content
Log in

Tunnel Light Through a Continuous Optically Thick Metal Film Utilizing Higher Order Magnetic Plasmon Resonance

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this letter, we investigate the extraordinary optical transmission behavior of a flat continuous metal film sandwiched by magnetic plasmonic structures. A new mechanism by utilizing higher order magnetic plasmon resonance is proposed to enhance the transmission. Numerical simulation results show that 80 % electromagnetic energy can be transmitted through the middle 50-nm-thick continuous gold film in near-infrared regime. The excitation of the second-order magnetic plasmons and the propagating surface plasmons, as well as the interaction between them accounts for such a high transmission. The interaction of magnetic plasmons and surface plasmons leads to new hybrid modes, and the coupled oscillator model is introduced to analyze this hybridization. This work extends the application range of higher order magnetic plasmons and may have potential in transparent electrode and electromagnetic energy transfer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669

    Article  CAS  Google Scholar 

  2. Brongersma ML, Kik PG (2007) Surface plasmon nanophotonics, vol 131. Springer Netherlands, Dordrecht

    Book  Google Scholar 

  3. Plasmonics (2007) Fundamentals and applications. Springer US, Boston, MA

    Google Scholar 

  4. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630–634

    Article  CAS  Google Scholar 

  5. Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan PM, Nordlander P, Halas NJ, García de Abajo FJ (2013) Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7(3):2388–2395

    Article  CAS  Google Scholar 

  6. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6(11):749–758

    Article  CAS  Google Scholar 

  7. Liu H, Lalanne P (2008) Microscopic theory of the extraordinary optical transmission. Nature 452(7188):728–731

    Article  CAS  Google Scholar 

  8. Rodrigo SG, García-Vidal FJ, Martín-Moreno L (2008) Influence of material properties on extraordinary optical transmission through hole arrays. Phys Rev B 77(7):075401

    Article  Google Scholar 

  9. Martín-Moreno L, García-Vidal FJ, Lezec HJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86(6):1114–1117

    Article  Google Scholar 

  10. Liu Z, Shao H, Liu G, Liu X, Fu G-L, Xu H-L, Liu M-L (2014) Robust optical transparency of a continuous metal film sandwiched by plasmonic crystals. Photonics Technol Lett IEEE 26(17):1738–1741

    Article  CAS  Google Scholar 

  11. Han D, Wu F, Li X, Xu C, Liu X, Zi J (2006) Transmission and absorption of metallic films coated with corrugated dielectric layers. Appl Phys Lett 89(9):091104

    Article  Google Scholar 

  12. Hao J, Qiu C-W, Qiu M, Zouhdi S (2012) Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures. Opt Lett 37(23):4955–4957

    Article  CAS  Google Scholar 

  13. Zhang L, Hao J, Ye H, Yeo SP, Qiu M, Zouhdi S, Qiu CW (2013) Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light. Nanoscale 5(8):3373–3379

    Article  CAS  Google Scholar 

  14. Wang W, Zhao D, Chen Y, Gong H, Chen X, Dai S, Yang Y, Li Q, Qiu M (2014) Grating-assisted enhanced optical transmission through a seamless gold film. Opt Express 22(5):5416–5421

    Article  Google Scholar 

  15. Liu Z, Liu G-P, Huang K, Chen Y, Hu Y, Zhang X, Cai Z (2013) Enhanced optical transmission of a continuous metal film with double metal cylinder arrays. Photonics Technol Lett IEEE 25(12):1157–1160

    Article  Google Scholar 

  16. Liu G-q HY, Z-q L, Y-h C, Z-j C, X-n Z, Huang K (2014) Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method. Phys Chem Chem Phys 16(9):4320–4328

    Article  Google Scholar 

  17. Chen Y, Liu G, Huang K, Hu Y, Zhang X, Cai Z (2013) Enhanced transmission of a plasmonic ellipsoid array via combining with double continuous metal films. Opt Commun 311:100–106

    Article  CAS  Google Scholar 

  18. Hu Y, G-q L, Z-q L, Y-h C, X-n Z, Z-j C, X-s L (2014) Robust double-spectral transparency of double mutually staggered plasmonic arrays sandwiched by two continuous metal films. Opt Commun 321:219–225

    Article  CAS  Google Scholar 

  19. Liu Z, Liu G, Huang S, Liu X, Huang H, Wang Y, Pan P, Gu G (2015) A simple strategy for tuning the opaque metal film to BE optical transparency by the dielectric cavity. Mater Lett 160:518–521

    Article  CAS  Google Scholar 

  20. Li HQ, Liu J, Yang Z, Wang K (2014) High broadband transmission of light through a multi-Layer sandwich microstructure containing a seamless metallic film. Photonics J IEEE 6(5):1–7

    CAS  Google Scholar 

  21. Liu Z, Nie Y, Yuan W, Liu X, Huang S, Chen J, Gao H, Gu G, Liu G (2015) Optical cavity-assisted broadband optical transparency of a plasmonic metal film. Nanotechnology 26(18):185701

    Article  Google Scholar 

  22. Marqués R, Martel J, Mesa F, Medina F (2002) Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides. Phys Rev Lett 89(18):183901

    Article  Google Scholar 

  23. Cubukcu E, Zhang S, Park Y-S, Bartal G, Zhang X (2009) Split ring resonator sensors for infrared detection of single molecular monolayers. Appl Phys Lett 95(4):043113

    Article  Google Scholar 

  24. Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis CM, Economou EN (2007) Left-handed metamaterials: the fishnet structure and its variations. Phys Rev B 75(23):235114

    Article  Google Scholar 

  25. Zhang S, Fan W, Malloy K, Brueck S, Panoiu N, Osgood R (2005) Near-infrared double negative metamaterials. Opt Express 13(13):4922–4930

    Article  Google Scholar 

  26. Liu N, Mukherjee S, Bao K, Brown LV, Dorfmuller J, Nordlander P, Halas NJ (2012) Magnetic plasmon formation and propagation in artificial aromatic molecules. Nano Lett 12(1):364–369

    Article  CAS  Google Scholar 

  27. Babar S, Weaver J (2015) Optical constants of Cu, Ag, and Au revisited. Appl Opt 54(3):477–481

    Article  CAS  Google Scholar 

  28. Liu H, Genov DA, Wu DM, Liu YM, Steele JM, Sun C, Zhu SN, Zhang X (2006) Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies. Physical Review Letters 97(24):243902

  29. Yanjun B, Yumin H, Zongpeng W (2014) Magnetic hybridization enhanced transmission through ultra-long subwavelength hole. J Opt 16(10):105101

    Article  Google Scholar 

  30. Verellen N, Denkova D, Clercq BD, Silhanek AV, Ameloot M, Dorpe PV, Moshchalkov VV (2015) Two-photon luminescence of gold nanorods mediated by higher order plasmon modes. ACS Photonics 2(3):410–416

    Article  CAS  Google Scholar 

  31. Akimov YA, Koh WS, Ostrikov K (2009) Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express 17(12):10195–10205

    Article  CAS  Google Scholar 

  32. Kaasbjerg K, Nitzan A (2015) Theory of light emission from quantum noise in plasmonic contacts: above-threshold emission from higher-order electron-plasmon scattering. Phys Rev Lett 114(12):126803

    Article  Google Scholar 

  33. Symonds C, Bonnand C, Plenet JC, Bréhier A, Parashkov R, Lauret JS, Deleporte E, Bellessa J (2008) Particularities of surface plasmon–exciton strong coupling with large Rabi splitting. New J Phys 10(6):065017

    Article  Google Scholar 

  34. Salomon A, Gordon RJ, Prior Y, Seideman T, Sukharev M (2012) Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film. Phys Rev Lett 109(7):073002

    Article  Google Scholar 

  35. Schlather AE, Large N, Urban AS, Nordlander P, Halas NJ (2013) Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett 13(7):3281–3286

    Article  CAS  Google Scholar 

  36. Tang CJ, Zhan P, Cao ZS, Pan J, Chen Z, Wang ZL (2011) Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials. Phys Rev B 83(4):041402

    Article  Google Scholar 

  37. Agranovich V, Litinskaia M, Lidzey DG (2003) Cavity polaritons in microcavities containing disordered organic semiconductors. Phys Rev B 67(8):085311

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Science Foundation of China (Grant No. 61178047, 61575006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumin Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Hou, Y., Li, W. et al. Tunnel Light Through a Continuous Optically Thick Metal Film Utilizing Higher Order Magnetic Plasmon Resonance. Plasmonics 11, 1445–1450 (2016). https://doi.org/10.1007/s11468-016-0195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0195-4

Keywords

Navigation