Skip to main content
Log in

Shape and topology optimization for tailoring the ratio between two flexural eigenfrequencies of atomic force microscopy cantilever probe

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In an operation mode of atomic force microscopy that uses a higher eigenmode to determine the physical properties of material surface, the ratio between the eigenfrequency of a higher flexural eigenmode and that of the first flexural eigenmode was identified as an important parameter that affects the sensitivity and accessibility. Structure features such as cut-out are often used to tune the ratio of eigenfrequencies and to enhance the performance. However, there lacks a systematic and automatic method for tailoring the ratio. In order to deal with this issue, a shape and topology optimization problem is formulated, where the ratio between two eigenfrequencies is defined as a constraint and the area of the cantilever is maximized. The optimization problem is solved via the level set based method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stark R W, Drobek T, Heckl W M. Tapping-mode atomic force microscopy and phase imaging in higher eigenmodes. Applied Physics Letters, 1999, 74(22): 3296

    Article  Google Scholar 

  2. Hillenbrand R, Stark M, Guckenberger R. Higher-harmonic generation in tapping-mode atomic-force microscopy: Insights into the tip-sample interaction. Applied Physics Letters, 2000, 76(23): 3478

    Article  Google Scholar 

  3. Sahin O, Quate C F, Solgaard O, Atalar A. Resonant harmonic response in tapping-mode atomic force microscopy. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(16): 165416

    Article  Google Scholar 

  4. Sahin O, Yaralioglu G, Grow R, Zappe S F, Atalar A, Quate C, Solgaard O. High-resolution imaging of elastic properties using harmonic cantilevers. Sensors and Actuators A: Physical, 2004, 114(2–3): 183–190

    Article  Google Scholar 

  5. Li H, Chen Y, Dai L. Concentrated-mass cantilever enhances multiple harmonics in tapping-mode atomic force microscopy. Applied Physics Letters, 2008, 92(15): 151903

    Article  Google Scholar 

  6. Sethian J A, Wiegmann A. Structural boundary design via level set and immersed interface methods. Journal of Computational Physics, 2000, 163(2): 489–528

    Article  MATH  MathSciNet  Google Scholar 

  7. Osher S, Santosa F. Level-set methods for optimization problems involving geometry and constraints: Frequencies of a two-density inhomogeneous drum. Journal of Computational Physics, 2001, 171(1): 272–288

    Article  MATH  MathSciNet  Google Scholar 

  8. Allaire G, Jouve F, Toader A M. A level-set method for shape optimization. Comptes Rendus Mathematique, 2002, 334(12): 1125–1130

    Article  MATH  MathSciNet  Google Scholar 

  9. Allaire G, Jouve F, Toader A M. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004, 194(1): 363–393

    Article  MATH  MathSciNet  Google Scholar 

  10. Wang M Y, Wang X M, Guo D M. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1–2): 227–246

    Article  MATH  MathSciNet  Google Scholar 

  11. Pedersen N L. Maximization of eigenvalue using topology optimization. Structural and Multidisciplinary Optimization, 2000, 20(1): 2–11

    Article  Google Scholar 

  12. Pedersen N L. Design of cantilever probes for atomic force microscopy (AFM). Engineering Optimization, 2000, 32(3): 373–392

    Article  Google Scholar 

  13. Chen K N. Model updating and optimum designs for V-shaped atomic force microscope probes. Engineering Optimization, 2006, 38(7): 755–770

    Article  Google Scholar 

  14. Díaaz A, Kikuchi N. Solution to shape and topology eigenvalue optimization problems using a homogenization method. International Journal for Numerical Methods in Engineering, 1992, 35(7): 1487–1502

    Article  MathSciNet  Google Scholar 

  15. Ma Z D, Cheng H C, Kikuchi N. Structural design for obtaining desired eigenfrequencies 23 by using the topology and shape optimizationg method. Computing Systems in Engineering, 1994, 5(1): 77–89

    Article  Google Scholar 

  16. Kosaka I, Swan C C. A symmetry reduction method for continuum structural topology optimization. Computers & Structures, 1999, 70(1): 47–61

    Article  MATH  MathSciNet  Google Scholar 

  17. Allaire G, Jouve F. A level-set method for vibration and multiple loads structural optimization. Computer Methods in Applied Mechanics and Engineering, 2005, 194(30-33): 3269–3290

    Article  MATH  MathSciNet  Google Scholar 

  18. Du J B, Olhoff N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Structural and Multidisciplinary Optimization, 2007, 34(2): 91–110

    Article  MATH  MathSciNet  Google Scholar 

  19. Xia Q, Shi T, Wang M Y. A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration. Structural and Multidisciplinary Optimization, 2011, 43(4): 473–485

    Article  MATH  MathSciNet  Google Scholar 

  20. Hopcroft MA, Nix WD, Kenny TW. What is the Young’s modulus of silicon? Journal of Microelectromechanical Systems, 2010, 19(2): 229–238

    Article  Google Scholar 

  21. Zienkiewicz O C, Taylor R L. The Finite Element Method (5th Edition), Vol. 2. Butterworth-Heinemann, 2000

    MATH  Google Scholar 

  22. Liew K M, Wang C M, Xiang Y, Kitipornchai S. Vibration of Mindlin Plates: Programming the P-Version Ritz Method. Elsevier, 1998

    MATH  Google Scholar 

  23. Xing Y, Liu B. Closed form solutions for free vibrations of rectangular Mendelian plates. Acta Mechanica Sinica, 2009, 25(5): 689–698

    Article  MATH  MathSciNet  Google Scholar 

  24. Choi K K, Kim N H. Structural Sensitivity Analysis and Optimization. Springer, 2005

    Google Scholar 

  25. Haug E J, Choi K K, Komkov V. Design Sensitivity Analysis of Structural Systems. Academic Press, 1986

    MATH  Google Scholar 

  26. Nocedal J, Wright S J. Numerical Optimization. Springer, 1999

    Book  MATH  Google Scholar 

  27. Wang X M, Wang M Y, Guo D M. Structural shape and topology optimization in a level-set-based framework of region representation. Structural and Multidisciplinary Optimization, 2004, 27(1–2): 1–19

    Article  Google Scholar 

  28. Mei Y, Wang X. A level set method for structural topology optimization and its applications. Advances in Engineering Software, 2004, 35(7): 415–441

    Article  MATH  Google Scholar 

  29. Xia Q, Shi T L, Wang M Y, Liu S Y. A level set based method for the optimization of cast part. Structural and Multidisciplinary Optimization, 2010, 41(5): 735–747

    Article  MathSciNet  Google Scholar 

  30. Xia Q, Shi T, Liu S, Wang M Y. A level set solution to the stressbased structural shape and topology optimization. Computers & Structures, 2012, 90–91: 55–64

    Article  Google Scholar 

  31. Sethian J A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. 2nd Edition. Cambridge Monographs on Applied and Computational Mathematics. Cambridge, UK: Cambridge University Press, 1999

    MATH  Google Scholar 

  32. Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces. New York: Springer-Verlag, 2002

    Google Scholar 

  33. Tcherniak D. Topology optimization of resonating structures using SIMP method. International Journal for Numerical Methods in Engineering, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Q., Zhou, T., Wang, M.Y. et al. Shape and topology optimization for tailoring the ratio between two flexural eigenfrequencies of atomic force microscopy cantilever probe. Front. Mech. Eng. 9, 50–57 (2014). https://doi.org/10.1007/s11465-014-0286-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-014-0286-x

Keywords

Navigation