Skip to main content
Log in

Optimization of Hydraulic-Hydrologic Complex System of Reservoirs and Connecting Tunnel

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Nowadays, population growth, environmental constraints and climate change can adversely affect our water supply systems’ ability to keep up with demand. Due to lack of unsuitable distribution and dispersion of water resources, precipitation, soil resources, etc., inter-basin transfers of water could be a solution in order to balancing between supply and demand water in different areas. In this study, the optimal designing of water conveyance from basin No-1 to basin No-2 is investigated. Water is transferred between these two dams by tunnel structure. Since the water flow through the tunnel is under pressure, increasing dam height will cause the decrease of tunnel diameter for constant water conveyance efficiency. The purpose of this study is transferring 95 % of water flow between two basins after supplying the agriculture consumption and environmental needs. Therefore, the mathematical program was developed first to solve the governing equations of water balance of reservoir and hydraulic of tunnel. Then, various strategies including different diameters of tunnel and dam height were considered and finally the best strategy from economic and technical viewpoint was proposed. The results showed that dam height of 151.2 m and tunnel diameter of 3.2 m are the economic options to convey of 95 % of the water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ballestero E (2004) Inter-basin water transfer public agreements: a decision approach to quantity and price. Water Resour Manag 18(1):75–88

    Article  Google Scholar 

  • Becker L, Yeh WWG (1974) Optimization of real time operation of a multiple-reservoir system. Water Resour Res 10:1107–1112. doi:10.1029/WR010i006p01107

    Article  Google Scholar 

  • Bellman R (1957) Dynamic programming. Princeton University Press, Princeton

    Google Scholar 

  • Butcher WS, Haimes YY, Hall WA (1969) Dynamic programming for the optimal sequencing of water supply projects. Water Resour Res 5:1196–1204. doi:10.1029/WR005i006p01196

    Article  Google Scholar 

  • Carmen Valdez M, Adler I, Barrett M, Ochoa R, Pérez A (2016) The water-energy-carbon nexus: optimizing rainwater harvesting in Mexico city. Environ Process 3:307–323. doi:10.1007/s40710-016-0138-2

    Article  Google Scholar 

  • Carvalho R, Magrini A (2006) Conflicts over water resource management in Brazil: a case study of inter-basin transfers. Water Resour Manag 20:193–213. doi:10.1007/s11269-006-7377-3

    Article  Google Scholar 

  • Chandramouli V, Kuppusamy KA, Manikandan K (2002) Study on water sharing in a multi-reservoir system using a dynamic programming-neural network model. Int J Water Resour Dev 18:425–438. doi:10.1080/0790062022000006916

    Article  Google Scholar 

  • Chang L-C, Chang F-J, Wang K-W, Dai S-Y (2010) Constrained genetic algorithms for optimizing multi-use reservoir operation. J Hydrol 390:66–74. doi:10.1016/j.jhydrol.2010.06.031

    Article  Google Scholar 

  • Chen C, McCarl B, Williams R (2006) Elevation dependent management of the Edwards aquifer: linked mathematical and dynamic programming approach. J Water Resour Plan Manag 132:330–340. doi:10.1061/(ASCE)0733-9496(2006)132:5(330)

    Article  Google Scholar 

  • Chitale SV (2006) Inter basin transfers by water grid caution and oercaution. J Hydraul Eng 12:1–6. doi:10.1080/09715010.2006.10514827

    Google Scholar 

  • Cohon JL, Marks DH (1973) Multiobjective screening models and water resource investment. Water Resour Res 9:826–836. doi:10.1029/WR009i004p00826

    Article  Google Scholar 

  • Cole D, Carver WB (2011) Interbasin transfers of water. Paper presented at the Proceedings of the 2011 Georgia Water Resources Conference, Athens, Georgia, April 11, 12, and 13, 2011

  • Dávid L (1984) Water transfer in a small country: Hungarian experiences and perspectives. Int J Water Resour Dev 2:135–156. doi:10.1080/07900628408722319

    Article  Google Scholar 

  • Doffman R (1962) Mathematical models: the multi-structure approach in design of water resources systems

  • Gray BE (1989) A primer on California water transfer law. Ariz J Int Comp Law 31:745–781

    Google Scholar 

  • Hall WA, and Shephard RW (1967) Optimum operations for planning of a complex water resource system, technical. Report, 122 (UCLA-ENG 67–54), Water Resource. Center, University of California, Los Angeles, School of Engineering and Applied Science, October

  • Jacoby HD, Loucks DP (1972) Combined use of optimization and simulation models in river basin planning. Water Resour Res 8:1401–1414. doi:10.1029/WR008i006p01401

    Article  Google Scholar 

  • Jain SK, Reddy NSRK, Chaube UC (2005) Analysis of a large inter-basin water transfer system in India/Analyse d’un grand système de transfert d’eau inter-bassins en Inde. Hydrol Sci J 50:null-137. doi:10.1623/hysj.50.1.125.56336

    Google Scholar 

  • Kim Y, Eum H, Lee E, Ko I (2007) Optimizing operational policies of a Korean multireservoir system using sampling stochastic dynamic programming with ensemble streamflow prediction. J Water Resour Plan Manag 133:4–14. doi:10.1061/(ASCE)0733-9496(2007)133:1(4)

    Article  Google Scholar 

  • Kontos YN, Katsifarakis KL (2012) Optimization of management of polluted fractured aquifers using genetic algorithms. Eur Water 40:31–42

    Google Scholar 

  • Kucukmehmetoglu M (2009) A game theoretic approach to assess the impacts of major investments on transboundary water resources: the case of the Euphrates and Tigris. Water Resour Manag 23:3069–3099. doi:10.1007/s11269-009-9424-3

    Article  Google Scholar 

  • Li C, Zhou J, Ouyang S, Ouyang S, Wang C, Liu L (2015) Water resources optimal allocation based on large-scale reservoirs in the upper reaches of Yangtze River. Water Resour Manag 29(7):2171–2187. doi:10.1007/s11269-015-0934-x

    Article  Google Scholar 

  • Loucks DP, Stedinger JR, Haith DA (1981) Water resource systems planning and analysis. Prentice-Hall, Englewood Cliffs, NJ, c1981

    Google Scholar 

  • Lund J (1988) Metropolitan water market development: Seattle, Washington, 1887–1987. J Water Resour Plan Manag 114:223–238. doi:10.1061/(ASCE)0733-9496(1988)114:2(223)

    Article  Google Scholar 

  • Lund JR (1993) Transaction risk versus transaction costs in water transfers. Water Resour Res 29:3103–3107. doi:10.1029/93WR01389

    Article  Google Scholar 

  • Lund J, Israel M (1995) Optimization of transfers in urban water supply planning. J Water Resour Plan Manag 121:41–48. doi:10.1061/(ASCE)0733-9496(1995)121:1(41)

    Article  Google Scholar 

  • Luss H (1999) On equitable resource allocation problems: a lexicographic minimax approach. Oper Res 47:361–378

    Article  Google Scholar 

  • Ma J, Hipel K, De M, Cai J (2008) Transboundary water policies: assessment comparison and enhancement. Water Resour Manag 22:1069–1087. doi:10.1007/s11269-007-9211-y

    Article  Google Scholar 

  • Maass A, Hufschmidt MM, Dorfman R, Thomas HA, Marglin SA, Fair GM (1962) The desert shall rejoice: conflicted growth and justice in arid environments. MIT Press, Cambridge, Mass

    Google Scholar 

  • Machado AR, Wendland E, Krause P (2016) Hydrologic simulation for water balance improvement in an outcrop area of the Guarani aquifer system. Environ Process 3:19–38. doi:10.1007/s40710-016-0128-4

    Article  Google Scholar 

  • Mahabaleshwara H, Nagabhushan HM (2014) Inter basin water transfers in India – a solution to hydrological extremities. Int J Res Eng Technol 3:530–537

    Article  Google Scholar 

  • Mahjouri N, Ardestani M (2010) A game theoretic approach for interbasin water resources allocation considering the water quality issues. Environ Monit Assess 167:527–544. doi:10.1007/s10661-009-1070-y

    Article  Google Scholar 

  • Meier WL, Beightler CS (1969) Optimization methods for branching multistage. Water resource systems—a reply to a comment by E. F Brater. Water Resour Res 5:319–320. doi:10.1029/WR005i001p00319

    Article  Google Scholar 

  • Mylopoulos Y, Kolokytha E, Kampragou E, Vagiona D (2008) A combined methodology for transboundary river basin management in Europe. Application in the nestos–mesta catchment area. Water Resour Manag 22:1101–1112. doi:10.1007/s11269-007-9214-8

    Article  Google Scholar 

  • Niksokhan MH, Kerachian R, Karamouz M (2009) A game theoretic approach for trading discharge permits in rivers. Water Sci Technol 60(3):793–804. doi:10.2166/wst.2009.394

    Article  Google Scholar 

  • Prichard AH, Scott CA (2014) Interbasin water transfers at the US–Mexico border city of Nogales, Sonora: implications for aquifers and water security. Int J Water Resour Dev 30:135–151. doi:10.1080/07900627.2012.755597

    Article  Google Scholar 

  • Razavi Toosi SL, Samani JM (2012) Evaluating water transfer projects using analytic network process (ANP). Water Resour Manag 26(7):1999–2014. doi:10.1007/s11269-012-9995-2

    Article  Google Scholar 

  • Revesz RL, Marks DH (1981) Local irrigation agencies. J Water Resour Plan Manag Div 107(2):329–338

    Google Scholar 

  • Rossman LA (2000) EPANET2 - Users manual. U.S. Enviromental Protection Agency, Cincinnati, OH, 45268

    Google Scholar 

  • Sadegh M, Mahjouri N, Kerachian R (2010) Optimal inter-basin water allocation using crisp and fuzzy Shapley games. Water Resour Manag 24:2291–2310. doi:10.1007/s11269-009-9552-9

    Article  Google Scholar 

  • Sehlke G, Jacobson J (2005) System dynamics modeling of transboundary systems: the Bear River basin model. Ground Water 43:722–730. doi:10.1111/j.1745-6584.2005.00065.x

    Article  Google Scholar 

  • Spiliotis M (2014) A particle swarm optimization (PSO) heuristic for water distribution system analysis. Water Util J 8:47–56

    Google Scholar 

  • Tayebiyan A, Mohammed Ali TA, Ghazali AH, Malek MA (2016) Optimization of exclusive release policies for hydropower reservoir operation by using genetic algorithm. Water Resour Manag 30(3):1203–1216

    Article  Google Scholar 

  • Tingsanchali T, Boonyasirikul T (2006) Stochastic dynamic programming with risk consideration for transbasin diversion system. J Water Resour Plan Manag 132:111–121. doi:10.1061/(ASCE)0733-9496(2006)132:2(111)

    Article  Google Scholar 

  • Tisdell JG, Harrison SR (1992) Estimating an optimal distribution of water entitlements. Water Resour Res 28:3111–3117. doi:10.1029/92WR01795

    Article  Google Scholar 

  • Ulanicki B, Kahler J, See H (2007) Dynamic optimization approach for solving an optimal scheduling problem in water distribution systems. J Water Resour Plan Manag 133:23–32. doi:10.1061/(ASCE)0733-9496(2007)133:1(23)

    Article  Google Scholar 

  • Wang X, Sun Y, Song L, Mei C (2009) An eco-environmental water demand based model for optimizing water resources using hybrid genetic simulated annealing algorithms. Part I. Model development. J Environ Manag 90:2628–2635. doi:10.1016/j.jenvman.2009.02.008

    Article  Google Scholar 

  • Wang K-W, Chang L-C, Chang F-J (2011) Multi-tier interactive genetic algorithms for the optimization of long-term reservoir operation. Adv Water Resour 34:1343–1351. doi:10.1016/j.advwatres.2011.07.004

    Article  Google Scholar 

  • Wang Q, Zhou H, Liang G, Xu H (2015) Optimal operation of bidirectional inter-basin water transfer-supply system. Water Resour Manag 29(9):3037–3054. doi:10.1007/s11269-014-0905-7

    Article  Google Scholar 

  • Windsor JS (1973) Optimization model for the operation of flood control systems. Water Resour Res 9:1219–1226. doi:10.1029/WR009i005p01219

    Article  Google Scholar 

  • Xuesen L, Bende W, Mehrotra R, Sharma A, Guoli W (2009) Consideration of trends in evaluating inter-basin water transfer alternatives within a fuzzy decision making framework. Water Resour Manag 23:3207–3220. doi:10.1007/s11269-009-9430-5

    Article  Google Scholar 

  • Yakowitz S (1982) Dynamic programming applications in water resources. Water Resour Res 18:673–696. doi:10.1029/WR018i004p00673

    Article  Google Scholar 

  • Yeh WWG (1985) Reservoir management and operations models: a state-of-the-art review. Water Resour Res 21:1797–1818. doi:10.1029/WR021i012p01797

    Article  Google Scholar 

  • Young HP, Okada N, Hashimoto T (1982) Cost allocation in water resources development. Water Resour Res 18:463–475. doi:10.1029/WR018i003p00463

  • Zeng X, Hu T, Guo X, Li X (2004) Water transfer triggering mechanism for multi-reservoir operation in inter-basin water transfer-supply project. Water Resour Manag 28(5):1293–1308

    Article  Google Scholar 

  • Zhang C, Wang G, Peng Y, Tang G, Liang G (2012) A negotiation-based multi-objective, multi-party decision-making model for inter-basin water transfer scheme optimization. Water Resour Manag 26(14):4029–4038

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Torabi Pudeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi Pudeh, H., Mansouri, R., Haghiabi, A.H. et al. Optimization of Hydraulic-Hydrologic Complex System of Reservoirs and Connecting Tunnel. Water Resour Manage 30, 5177–5191 (2016). https://doi.org/10.1007/s11269-016-1477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-016-1477-5

Keywords

Navigation