Skip to main content
Log in

Constitutive expression of a plant ferredoxin-like protein (pflp) enhances capacity of photosynthetic carbon assimilation in rice (Oryza sativa)

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The plant ferredoxin-like protein (PFLP) gene, cloned from sweet peppers predicted as an electron carrier in photosynthesis, shows high homology to the Fd-I sequence of Arabidopsis thaliana, Lycopersicon esculentum, Oryza sativa and Spinacia oleracea. Most of pflp related studies focused on anti-pathogenic effects, while less understanding for the effects in photosynthesis with physiological aspects, such as photosynthesis rate, and levels of carbohydrate metabolites. This project focuses on the effects of pflp overexpression on photosynthesis by physiological evaluations of carbon assimilation with significant higher levels of carbohydrates with higher photosynthesis efficiency. In this report, two independent transgenic lines of rice plants (designated as pflp-1 and pflp-2) were generated from non-transgenic TNG67 rice plant (WT). Both transgenic pflp rice plants exhibited enhanced photosynthesis efficiency, and gas exchange rates of photosynthesis were 1.3- and 1.2-fold higher for pflp-1 and pflp-2 than WT respectively. Significantly higher electron transport rates of pflp rice plants were observed. Moreover, photosynthetic products, such as fructose, glucose, sucrose and starch contents of pflp transgenic lines were increased accordingly. Molecular evidences of carbohydrate metabolism related genes activities (osHXK5, osHXK6, osAGPL3, osAGPS2α, osSPS, ospFBPase, oscFBPase, and osSBPase) in transgenic lines were higher than those of WT. For performance of crop production, 1000-grain weight for pflp-1 and pflp-2 rice plants were 52.9 and 41.1 g that were both significantly higher than 31.6 g for WT, and panicles weights were 1.4- and 1.2-fold higher than WT. Panicle number, tiller number per plants for pflp rice plants were all significantly higher compared with those of WT where there was no significant difference observed between two pflp rice plants. Taken altogether; this study demonstrated that constitutive pflp expression can improve rice production by enhancing the capacity of photosynthetic carbon assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akihiro T, Mizuno K, Fujimura T (2005) Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol 46:937–946

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1971) The light reactions of photosynthesis. Proc Natl Acad Sci 68:2883–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Balmer Y, Vensel WH, Cai N, Manieri W, Schűrmann P, Hurkman WJ, Buchanan BB (2006) A complete ferredoxin–thioredoxin system regulates fundamental processes in amyloplasts. Proc Natl Acad Sci 103:2988–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baroli I, Price GD, Badger MR, Caemmerer S (2008) The contribution of photosynthesis to the red light response of stomatal conductance. Plant Physiol 146:737–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco NE, Ceccoli RD, Segretin ME, Poli HO, Voss I, Melzer M, Bravo-Almonacid FF, Scheibe R, Hajirezaei MR, Carrillo N (2011) Cyanobacterial flavodoxin complements ferredoxin deficiency in knocked-down transgenic tobacco plants. Plant J 65:922–935

    Article  CAS  PubMed  Google Scholar 

  • Brudvig GW (2013) Water oxidation chemistry of photosystem II. Philos Trans R Soc B 363:1211–1219

    Article  Google Scholar 

  • Bukhov N, Carpentier R (2004) Alternative photosystem I-driven electron transport routes: mechanisms and functions. Photosynth Res 82:17–33

    Article  CAS  PubMed  Google Scholar 

  • Chan YL, Lin KH, Sanjaya Liao LJ, Chen WH, Chan MT (2005) Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Transgenic Res 14:279–288

    Article  CAS  PubMed  Google Scholar 

  • Chen WH, Tseng YC, Liu YC, Chuo CM, Chen PT, Tseng KM, Yeh YC, Ger MJ, Wang HL (2008) Cool-night temperature induces spike emergence and affects photosynthetic efficiency and metabolizable carbohydrate and organic acid pools in Phalaenopsis aphrodite. Plant Cell Rep 27:1667–1675

    Article  CAS  PubMed  Google Scholar 

  • Chida H, Nakazawa A, Akazaki H, Hirano T, Suruga K, Ogawa M, Satoh T, Kadokura K, Yamada S, Hakamata W, Isobe K, Ito T, Ishii R, Nishio T, Sonoike K, Oku T (2007) Expression of the algal cytochrome c6 gene in Arabidopsis enhances photosynthesis and growth. Plant Cell Physiol 48:948–995

    Article  CAS  PubMed  Google Scholar 

  • Comparot-Moss S, Denyer K (2009) The evolution of the starch biosynthetic pathway in cereals and other grasses. J Exp Bot 60:2481–2492

    Article  CAS  PubMed  Google Scholar 

  • Dayakar BV, Lin HJ, Chen CH, Ger MJ, Lee BH, Pai CH, Chow D, Huang HE, Hwang SY, Chung MC, Feng TY (2003) Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpinpss-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS). Plant Mol Biol 51:913–924

    Article  CAS  PubMed  Google Scholar 

  • Dunford RP, Durrant MC, Catley MA, Dyer T (1998) Location of the redox-active cysteines in chloroplast sedoheptulose-1,7-bisphosphatase indicates that its allosteric regulation is similar but not identical to that of fructose-1,6-bisphosphatase. Photosynth Res 58:221–230

    Article  CAS  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaf of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Wang K, Li Y, Tan Y, Kong J, Li H, Li YS, Zhu Y (2007) Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep 26:1635–1646

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Velasco JG, Jamshidi A, Gong XS, Zhou J, Ueng RY (2001) Photosynthetic electron transfer through the cytochrome b6f complex can bypass cytochrome f. J Biol Chem 276:30598–30607

    Article  PubMed  Google Scholar 

  • Fu Y, Ballicora MA, Leykam JF, Preiss J (1998) Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. J Biol Chem 273:25045–25052

    Article  CAS  PubMed  Google Scholar 

  • Geigenberger P, Kolbe A, Tiessen A (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. J Exp Bot 56:1469–1479

    Article  CAS  PubMed  Google Scholar 

  • Ger MJ, Louh GY, Lin YH, Feng TY, Huang HE (2014) Ectopically expressed sweet pepper ferredoxin PFLP enhances disease resistance to Pectobacterium carotovorum subsp. carotovorum affected by harpin and protease-mediated hypersensitive response in Arabidopsis. Mol Plant Pathol 15:892–906

    CAS  PubMed  Google Scholar 

  • Gibson SI (2000) Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol 124:1532–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golding AJ, Finazzi G, Johnson GN (2004) Reduction of the thylakoid electron transport chain by stromal reductants—evidence for activation of cyclic electron transport upon dark adaptation or under drought. Planta 220:356–363

    Article  CAS  PubMed  Google Scholar 

  • Hanke GT, Hase T (2008) Variable photosynthetic roles of two leaf-type ferredoxins in Arabidopsis, as revealed by RNA interference. Photochem Photobiol 84:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Holtgrefe S, Bader KP, Horton P, Scheibe R, Schaewen A, Backhause JE (2003) Decreased content of leaf ferredoxin changes electron distribution and limits photosynthesis in transgenic potato plants. Plant Physiol 133:1768–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HE, Ger MJ, Yip MK, Chen CY, Pandey AK, Feng TY (2004) A hypersensitive response was induced by virulent bacteria in transgenic tobacco plants overexpressing a plant ferredoxin-like protein (PFLP). Mol Plant Pathol 64:103–110

    Article  CAS  Google Scholar 

  • Ishimaru K (2003) Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol 133:1083–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Jacquot JP, Lopez JJ, Miginiac MM, Lemaire S, Cherfils J, Chueca A, Lopez GJ (1997) Cysteine-153 is required for redox regulation of pea chloroplast fructose-1,6-bisphosphatase. FEBS Lett 401:143–147

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci 99:10209–10214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

    Article  CAS  PubMed  Google Scholar 

  • Kern J, Renger G (2007) Photosystem II: structure and mechanism of the water:plastoquinone oxidoreductase. Photosynth Res 94:183–202

    Article  CAS  PubMed  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Cur Opin Plant Biol 7:235–246

    Article  CAS  Google Scholar 

  • Lawson T (2009) Guard cell photosynthesis and stomatal function. New Phytol 181:13–34

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Jeon JS, Bornke F, Voll L, Cho JI, Goh CH, Jeong SW, Park YI, Kim SJ, Choi SB, Miyao A, Hirochika H, An G, Cho MH, Bhoo SH, Sonnewald U, Hahn TR (2008) Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa). Plant Cell Environ 31:1851–1863

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre S, Lawson T, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Xing J, Gianfagna TJ, Janes HW (2002) Sucrose regulation of ADP-glucose pyrophosphorylase subunit genes transcript levels in leaves and fruits. Plant Sci 162:239–244

    Article  CAS  PubMed  Google Scholar 

  • Liau CH, Lu JC, Prasad V, Hsiao HH, You SJ, Lee JT, Yang NS, Huang HE, Feng TY, Chen WH, Chan MT (2003) The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res 12:329–336

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Abelson JN (ed) Methods in enzymology. Academic Press Inc, Elservier, pp 350–382

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE, MacRae E (2003) New complexities in the synthesis of sucrose. Curr Opin Plant Biol 6:208–214

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa Y, Tamoi M, Shigeoka S (2001) Overexpression of a cyanobacterial fructose-1, 6-/sedohetulose-1, 7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotechnol 19:965–969

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Shinzaki Y, Miyata M, Tomizawa K (2004) Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of ChI fluorescence in intact leaves of tobacco plants. Plant Cell Physiol 45:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Miyata M, Shinzaki Y, Tomizawa K (2005) CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves-relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of ChI fluorescence. Plant Cell Physiol 46:629–637

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  CAS  PubMed  Google Scholar 

  • Nagai YS, Sakulsingharoj C, Edwards GE, Satoh H, Greene TW, Blakeslee B, Okita TW (2009) Control of starch synthesis in cereals: metabolite analysis of transgenic rice expressing an up-regulated cytoplasmic ADP-glucose pyrophosphorylase in developing seeds. Plant Cell Physiol 50:635–643

    Article  CAS  PubMed  Google Scholar 

  • Namukaya B, Tripathi L, Tripathi JN, Arinaitwe G, Mukasa SB, Tushemereirwe WK (2012) Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic Res 21:855–865

    Article  Google Scholar 

  • Nimusiima J, Köberl M, Tumuhairwe JB, Kubiriba J, Staver S, Berg G (2015) Transgenic banana plants expressing Xanthomonas wilt resistance genes revealed a stable non-target bacterial colonization structure. Sci Rep 5:18078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi K, Yoshida K (2008) Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8:87–99

    Article  CAS  PubMed  Google Scholar 

  • Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5:193–198

    Article  CAS  PubMed  Google Scholar 

  • Orzechowski S (2008) Starch metabolism in leaves. Acta Biochim Polonica 55:435–445

    CAS  Google Scholar 

  • Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918

    Article  CAS  PubMed  Google Scholar 

  • Rochaix JD (2011) Regulation of photosynthetic electron transport. Biochim Biophys Acta 1807:375–383

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955

    Article  CAS  PubMed  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Scafaro AP, Haynes PA, Atwell BJ (2010) Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. J Exp Bot 61:191–202

    Article  CAS  PubMed  Google Scholar 

  • Schurmann P, Buchanan BB (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redos Signal 10:1236–1274

    Google Scholar 

  • Sun J, Okita TW, Edwards GE (1999) Modification of carbon partitioning, photosynthetic capacity and O2 sensitivity in arabidopsis plants with low ADP-glucose pyrophosphorylase activity. Plant Physiol 119:267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Gibson KM, Kiirats O, Okita TW, Edwards GE (2002) Interactions of nitrate and CO2 enrichment on growth, carbohydrates, and Rubisco in Arabidopsis starch mutants. Significance of starch and hexose. Plant Physiol 130:1573–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan MS (2007) Can science and technology feed the world in 2025? Field Crops Res 104:3–9

    Article  Google Scholar 

  • Tang K, Sun X, Hu Q, Wu A, Lin CH, Lin HJ, Twyman RM, Christou P, Feng TY (2001) Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. oryzae. Plant Sci 160:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Voss I, Koelmann M, Wojtera J, Holtgrefe S, Kitzmann C, Backhausen JE, Scheibe R (2008) Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana. Physiol Plant 133:584–598

    Article  CAS  PubMed  Google Scholar 

  • Wang HL, Lee PD, Chen WL, Huang DJ, Su JC (2000) Osmotic stress-induced changes of sucrose metabolism in cultured sweet potato cells. J Exp Bot 51:1991–1999

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Chiou CY, Wang HL, Krishnamurthy R, Venkatagiri S, Tan J, Yeh KW (2008) Carbohydrate mobilization and gene regulatory profile in the pseudobulb of oncidium orchid during the flowering process. Planta 227:1063–1077

    Article  CAS  PubMed  Google Scholar 

  • Weschke W, Panitz R, Sauer N, Wang Q, Neubohn B, Weber H, Wobus U (2000) Sucrose transport into barley seeds: molecular characterization of two transporters and implications for seed development and starch accumulation. Plant J 21:455–467

    Article  CAS  PubMed  Google Scholar 

  • Wong SC, Cowan IR, Farquhar HD (1985) Leaf conductance in relation to rate of CO2 assimilation. Plant Physiol 78:826–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto H, Kato H, Shinzaki Y, Horiguchi S, Shikanai T, Endo T, Nishioka M, Tomizawa K, Miyake C (2006) Ferredoxin limits cyclic electron flow around PSI (CEF-PSI) in higher plants-stimulation of CEF-PSI enhances non-photochemical quenching of Chl fluorescence in transplastomic tobacco. Plant Cell Physiol 47:1355–1371

    Article  CAS  PubMed  Google Scholar 

  • Yip MK, Huang HE, Ger MJ, Chiu SH, Tsai YC, Lin CI, Feng TY (2007) Production of soft rot resistant calla lily by expressing a ferredoxin-like protein gene (pflp) in transgenic plants. Plant Cell Rep 26:449–457

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q (2007) Strategies for developing green super rice. Proc Natl Acad Sci 104:16402–16409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by research Grants to M.-J. Ger from the National Science Council of Taiwan (NSC 98-2313-B-390 -002 -MY3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hsiang Chang or Mang-Jye Ger.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, H., Huang, HE., Cheng, CF. et al. Constitutive expression of a plant ferredoxin-like protein (pflp) enhances capacity of photosynthetic carbon assimilation in rice (Oryza sativa). Transgenic Res 26, 279–289 (2017). https://doi.org/10.1007/s11248-016-0005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-016-0005-y

Keywords

Navigation