Skip to main content
Log in

Doubled haploids of novel trigenomic Brassica derived from various interspecific crosses

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

To develop doubled haploid (DH) mapping populations of hexaploid Brassica, 10 F1 hybrids derived from crosses between allohexaploid Brassica parents were evaluated in this study. The allohexaploid Brassica parents were selfed progenies of unique interspecific crosses between Brassica rapa (genome AA) × B. carinata (BBCC), B. nigra (BB) × B. napus (AACC), and a complex cross between B. juncea (AABB), B. napus and B. carinata, with relatively stable chromosome number (2n = 54). Hexaploid status and chromosome behavior during meiosis I in four promising F1 hybrids were assessed using microscopy and flow cytometry, and progeny were obtained following microspore culture. Hybrids H11-2 and H16-1 demonstrated higher amenability for embryo generation, plantlet regeneration, and frequency of production of DH microspore-derived progeny of hexaploid DNA content (6x) compared to hybrids H08-1 and H24-1. A total of 370 6x DH progeny were selected out of 693 plantlets from H11-2, 241/436 from H16-1, 23/54 from H08-1, and 21/56 from H24-1. DH progenies of hybrids H11-2 and H16-1 were then designated as promising mapping populations of a new hexaploid Brassica species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

DH:

Doubled haploid

MD:

Microspore-derived

PMC:

Pollen mother cells

PI:

Propidium iodide

RFLP:

Restriction fragment length polymorphism

SSR:

Simple sequence repeats

References

  • Ahmadi B, Alizadeh K, da Silva JAT (2012) Enhanced regeneration of haploid plantlets from microspores of Brassica napus L. using bleomycin, PCIB, and phytohormones. Plant Cell Tiss Org Cult 109:525–533

    Article  CAS  Google Scholar 

  • Ammar K, Mergoum M, Rajaram S (2004) The history and evolution of triticale. In: Mergoum M, Macpherson HG (eds) Triticale improvement and production (FAO plant production and protection paper 179). Food and Agriculture Organization of the United Nations, Rome, pp 1–9

    Google Scholar 

  • Bennett MD (2004) Perspectives on polyploidy in plants-ancient and neo. Biol J Linn Soc 82:411–423

    Article  Google Scholar 

  • Busso C, Attia T, Robbelen G (1987) Trigenomic combinations for the analysis of meiotic control in the cultivated Brassica species. Genome 29:331–333

    Article  Google Scholar 

  • Chen S, Nelson MN, Chèvre AM, Jenczewski E, Li ZY, Mason AS, Meng JL, Plummer JA, Pradhan A, Siddique KHM, Snowdon RJ, Yan GJ, Zhou WJ, Cowling WA (2011) Trigenomic bridges for Brassica improvement. Crit Rev Plant Sci 30:524–547

    Article  CAS  Google Scholar 

  • Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43:387–399

    Article  CAS  PubMed  Google Scholar 

  • Cousin A, Nelson M (2009) Twinned microspore-derived embryos of canola (Brassica napus L.) are genetically identical. Plant Cell Rep 28:831–835

    Article  CAS  PubMed  Google Scholar 

  • Dreisigacker S, Kishii M, Lage J, Warburton M (2008) Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Aust J Agric Res 59:413–420

    Article  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  Google Scholar 

  • Feldman M (2001) The origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The World wheat book. Lavoisier Publishing, Paris, pp 1–56

    Google Scholar 

  • Ferreira ME, Williams PH, Osborn TC (1994) RFLP mapping of Brassica napus using doubled-haploid lines. Theor Appl Genet 89:615–621

    Article  CAS  Google Scholar 

  • Ferrie AMR, Mollers C (2011) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tiss Org Cult 104:375–386

    Article  Google Scholar 

  • Ge XH, Wang J, Li ZY (2009) Different genome-specific chromosome stabilities in synthetic Brassica allohexaploids revealed by wide crosses with Orychophragms. Ann Bot 104:19–31

    Article  CAS  PubMed  Google Scholar 

  • Govil S, Babbar SB, Gupta SC (1986) Plant regeneration from in vitro cultured anthers of black mustard (Brassica nigra Koch). Plant Breed 97:64–71

    Article  Google Scholar 

  • Guo SM, Zou J, Li RY, Long Y, Chen S, Meng JL (2012) A genetic linkage map of Brassica carinata constructed with a doubled haploid population. Theor Appl Genet 125:1113–1124

    Article  CAS  PubMed  Google Scholar 

  • Hetz E, Schieder O (1989) Plant regeneration from isolated microspores of black mustard (Brassica nigra). Science for plant breeding: XII Eucarpia congress, Göttingen, pp 10–15

  • Johnstone FE (1939) Chromosome doubling in potatoes induced by colchicine treatment. Am J Potato Res 16:288–304

    Article  CAS  Google Scholar 

  • Kimber DS, McGregor DI (1995) Brassica oilseeds: production and utilization. CAB International, Wallingford

    Google Scholar 

  • Larter EN, Gustafson JP (1980) Triticale. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. American Society of Agronomy & Crop Science Society of America, Madison, pp 681–694

    Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  CAS  PubMed  Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Li Z, Liu HL, Luo P (1995) Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor Appl Genet 91:131–136

    Google Scholar 

  • Li M, Qian W, Meng WJ, Li Z (2004) Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosom Res 12:417–426

    Article  Google Scholar 

  • Li MT, Li ZY, Zhang CY, Qian W, Meng JL (2005a) Reproduction and cytogenetic characterization of interspecific hybrids derived from crosses between Brassica carinata and B. rapa. Theor Appl Genet 110:1284–1289

    Article  CAS  PubMed  Google Scholar 

  • Li MT, Zhang CY, Li ZY, Meng JL (2005b) The analysis of the biological characters in hexaploid hybrids derived from Brassica carinata and Brassica rapa. Acta Agron Sin 31:1579–1585

    CAS  Google Scholar 

  • Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Ployploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    Article  CAS  PubMed  Google Scholar 

  • Mason A, Yan GJ, Cowling WA, Nelson M (2012) A new method for producing allohexaploid Brassica through unreduced gametes. Euphytica 186:277–287

    Article  CAS  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants-evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Article  CAS  PubMed  Google Scholar 

  • Meng JL, Shi SW, Gan L, Li ZY, Qu XS (1998) The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica 103:329–333

    Article  Google Scholar 

  • Mestiri I, Chague V, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Chalhoub B, Jahier J (2010) Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol 186:86–101

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi PP, Moieni A, Ebrahimi A, Javidfar F (2012) Doubled haploid plants following colchicine treatment of microspore-derived embryos of oilseed rape (Brassica napus L.). Plant Cell Tiss Org Cult 108:251–256

    Article  CAS  Google Scholar 

  • Murphy EV, Zhang Y, Zhu W, Biggs J (1995) The human glioma pathogenesis-related protein is structurally related to plant pathogenesis-related proteins and its gene is expressed specifically in brain tumors. Gene 159:131–135

    Article  CAS  PubMed  Google Scholar 

  • U N (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Nelson MN, Mason A, Castello MC, Thomson L, Yan GJ, Cowling WA (2009) Microspore culture preferentially selects unreduced (2n) gametes from an interspecific hybrid of Brassica napus L. × Brassica carinata Braun. Theor Appl Genet 119:497–505

    Article  PubMed  Google Scholar 

  • Pradhan A, Plummer JA, Nelson MN, Cowling WA, Yan GJ (2010) Successful induction of trigenomic hexaploid Brassica from a triploid hybrid of B. napus L. and B. nigra (L.) Koch. Euphytica 176:87–98

    Article  Google Scholar 

  • Rahman MH (2001) Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breeding 120:463–472

    Article  Google Scholar 

  • Raman H, Raman R, Nelson MN, Aslam MN, Rajasekaran R, Wratten N, Cowling WA, Kilian A, Sharpe AG, Schondelmaier J (2012) Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.). DNA Res 19:51–65

    Article  CAS  PubMed  Google Scholar 

  • Saisingtong S, Schmid JE, Stamp P, Buter B (1996) Colchicine mediated chromosome doubling during anther culture of maize (Zea mays L.). Theor Appl Genet 92:1017–1023

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1995) The dynamic nature of polyploidy genomes. Proc Natl Acad Sci USA 92:8089–8091

    Article  CAS  PubMed  Google Scholar 

  • Takahira J, Cousin A, Nelson MN, Cowling WA (2011) Improvement in efficiency of microspore culture to produce doubled haploid canola (Brassica napus L.) by flow cytometry. Plant Cell Tiss Org Cult 104:51–59

    Article  Google Scholar 

  • Takashima H, Hasegawa H, Nakamura A (1995) A simple method for chromosome doubling in tobacco anther culture. Breed Sci 45:107–110

    Google Scholar 

  • Tian E, Jiang Y, Chen L, Zou J, Liu F, Meng JL (2010) Synthesis of a Brassica trigenomic allohexaploid (B. carinata × B. rapa) de novo and its stability in subsequent generations. Theor Appl Genet 121:1431–1440

    Article  CAS  PubMed  Google Scholar 

  • Winarto B, da Silva JAT (2011) Microspore culture protocol for Indonesian Brassica oleracea. Plant Cell Tiss Org Cult 107:305–315

    Article  Google Scholar 

  • Xu L, Najeeb U, Tang GX, Gu HH, Zhang GQ, He Y, Zhou WJ (2007) Haploid and doubled haploid technology. Adv Bot Res 45:181–216

    Article  CAS  Google Scholar 

  • Yu SC, Zhang FL, Yu RB, Zou YM, Qi JN, Zhao XY, Yu YJ, Zhang DS, Li L (2009) Genetic mapping and localization of a major QTL for seedling resistance to downy mildew in Chinese cabbage (Brassica rapa ssp pekinensis). Mol Breed 23:573–590

    Article  CAS  Google Scholar 

  • Zhang LQ, Liu DC, Yan ZH, Lan XJ, Zheng YL, Zhou YH (2004) Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Sci China Ser C 47:553–561

    Article  CAS  Google Scholar 

  • Zhang GQ, He Y, Xu L, Tang GX, Zhou WJ (2006) Genetic analyses of agronomic and seed quality traits of doubled haploid population in Brassica napus through microspore culture. Euphytica 149:169–177

    Article  CAS  Google Scholar 

  • Zhou WJ, Hagberg P, Tang GX (2002a) Increasing embryogenesis and doubling efficiency by immediate colchicine treatment of isolated microspores in spring Brassica napus. Euphytica 128:27–34

    Article  CAS  Google Scholar 

  • Zhou WJ, Tang GX, Hagberg P (2002b) Efficient production of doubled haploid plants by immediate colchicine treatment of isolated microspores in winter Brassica napus. Plant Growth Regul 37:185–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported partly by the Science and Technology Department of Zhejiang Province (2012C12902-1, 2011R50026-5), the National Natural Science Foundation of China (31000678), and the Australia-China Special Fund, jointly managed by the Department of Innovation Industry Science and Research (Australia) and the Ministry of Science and Technology, National Natural Science Foundation (China). I.A. Astarini was the recipient of an Indonesian government Program of Academic Recharging (PAR). We thank Anouska Cousin for helping in microspore culture procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Zhou.

Additional information

X. X. Geng and S. Chen: equal first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, X.X., Chen, S., Astarini, I.A. et al. Doubled haploids of novel trigenomic Brassica derived from various interspecific crosses. Plant Cell Tiss Organ Cult 113, 501–511 (2013). https://doi.org/10.1007/s11240-013-0292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0292-4

Keywords

Navigation