Skip to main content

Advertisement

Log in

Transgenic lines of melon (Cucumis melo L. var. makuwa cv. ‘Silver Light’) expressing antifungal protein and chitinase genes exhibit enhanced resistance to fungal pathogens

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The oriental melon (Cucumis melo L. var. makuwa cv. ‘Silver Light’) is an important fruit crop in the tropical and subtropical regions. However, oriental melon production is severely decreased by fungal diseases. In this study, antifungal protein (AFP) and chitinase (CHI) fusion genes were introduced into oriental melons to control fungal diseases caused by Rhizoctonia solani and Fusarium oxysporum. Transformation of oriental melon (Cucumis melo L. var. makuwa cv. ‘Silver Light’) with Agrobacterium tumefaciens strain LBA4404 containing antifungal protein (AFP) and chitinase (CHI) fusion genes under the control of the cauliflower mosaic virus (CaMV) 35S promoter and neomycin phosphotransferase (nptII) gene as a selectable marker was performed. Cotyledon explants of oriental melon were inoculated by Agrobacterium suspensions with pBI121–AFPCHI and cultured in a regeneration medium. After regeneration, genomic DNA polymerase chain reaction (PCR) was conducted to confirm the presence of putative transgenic shoots. Southern blot analysis confirmed that the AFPCHI fusion gene was incorporated into the genomic DNA of the PCR-positive lines. RT-PCR analysis showed that the AFPCHI fusion gene was expressed in the individual transgenic lines. Western blot analysis revealed the accumulation of CHI protein in leaves. A segregation analysis of the T1 generation confirmed the inheritance of the transgene. Our results demonstrated that the AFPCHI fusion gene was effective in protecting the transgenic melon plants against fungal disease caused by Rhizoctonia solani and Fusarium oxysporum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AO, Gomes VM (2009) Plant defensins-Prospects for the biological functions and biotechnological properties. Peptides 30:1007–1020

    Article  CAS  Google Scholar 

  • Chen SC, Liu AR, Wang FH, Ahammed GJ (2009) Combined overexpression of chitinase and defensin genesin transgenic tomato enhances resistance to Botrytis cinerea. Afr J Biotechnol 8:5182–5188

    CAS  Google Scholar 

  • Chhikara S, Chaudhury D, Dhankher OP, Jaiwal PK (2012) Combined expression of a barley class II chitinase and type I ribosome inactivating protein in transgenic Brassica juncea provides protection against Alternaria brassicae. Plant Cell Tissue Organ Cult 108:83–89

    Article  CAS  Google Scholar 

  • Choi JY, Shin JS, Chung YS, Hyung NI (2012) An efficient selection and regeneration protocol for Agrobacterium-mediated transformation of oriental melon (Cucumis melo L. var. makuwa). Plant Cell Tissue Organ Cult 110:133–140

    Article  CAS  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  PubMed  CAS  Google Scholar 

  • Cornelisen BJC, Melchers LS (1993) Strategies for control of fungal diseases with transgenic plants. Plant Physiol 101:709–712

    Google Scholar 

  • Corrado G, Arciello S, Fanti P, Fiandra L, Garonna A, Digilio MC, Lorito M, Giordana B, Pennacchio F, Rao R (2007) The Chitinase A from the baculovirus AcMNPV enhances resistance to both fungi and herbivorous pests in tobacco. Transgenic Res. doi:10.1007/s11248-007-9129-4

    PubMed  Google Scholar 

  • Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414

    Article  PubMed  CAS  Google Scholar 

  • Dieter P, He PL, Rainer F, Fritz K, Yu CL (2004) Fusion proteins comprising a Fusarium—specific antibody linked to antifungal peptides protect plants against a fungal pathogen. Nat Biotechnol 22:732–738

    Article  Google Scholar 

  • Elliott PE, Lewis RS, Shew HD, Gutierrez WA, Nicholson JS (2008) Evaluation of tobacco germplasm for seedling resistance to stem rot and target spot caused by Thanatephorus cucumeris. Plant Dis 92:425–430

    Article  Google Scholar 

  • Fang G, Grumet R (1990) Agrobacterium tumefaciens mediated transformation and regeneration of muskmelon plants. Plant Cell Rep 9:160–164

    Article  CAS  Google Scholar 

  • Fiocchetti F, D Amore R, De Palma M, Bertini L, Caruso C, Caporale C, Testa A, Cristinzio G, Saccardo F, Tucci M (2008) Constitutive over-expression of two wheat pathogenesis-related genes enhances resistance of tobacco plants to Phytophthora nicotianae. Plant Cell Tissue Organ Cult 92:73–84

    Article  Google Scholar 

  • Ganesan M, Bhanumathi P, Ganesh Kumari K, Lakshmi Prabha A, Song P-S, Jayabalan N (2009) Transgenic Indian cotton (Gossypium hirsutum) harboring rice chitinase gene (Chi II) confers resistance to two fungal pathogens. Am J Plant Biochem Biotechnol 5(2):63–74

    Article  CAS  Google Scholar 

  • Gilbert MO, Zhang YY, Punja ZK (1996) Introduction and expression of chitinase encoding genes in carrot following Agrobacterium-mediated transformation. In vitro Cell Dev Biol Plant 32:171–178

    Article  CAS  Google Scholar 

  • Girhepuje PV, Shinde GB (2011) Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. lycopersici. Plant Cell Tissue Organ Cult 105:243–251

    Article  CAS  Google Scholar 

  • Gutierrez WA, Shew HD, Melton TA (1997) Source of inoculum and management for Rhizoctonia solani damping-off on tobacco transplants under greenhouse conditions. Plant Dis 81:604–606

    Article  Google Scholar 

  • Hsiao YL, Chiling SC, Liang SL, Chien AL, Ming TC, Yee YC (2003) Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsfA1b) enhances chilling tolerance in transgenic tomato. Bot Bull Acad Sin 44:129–140

    Google Scholar 

  • Institute SAS (1999) SAS system version 8 for windows. SAS Institute, Cary

    Google Scholar 

  • Jean-Yves P, Douglas KB, Martin BD, Robert MH, Harjeet KK, James LD (2011) Apoptosis-related genes confer resistance to Fusarium wilt in transgenic ‘Lady Finger’ bananas. Plant Biotechnol J 9:1141–1148

    Article  Google Scholar 

  • Jongedijk E, Tigelaar H, Van Roekel JSC (1995) Synergistic activity of chitinase and β- 1,3 glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85:173–180

    Article  CAS  Google Scholar 

  • Kwon KM, Hong RJ, Kim HY, Kim CK (2001) Soil-environmental factors involved in the development of root rot/vine on cucurbits caused by Monosporascus cannonballus. Plant Pathol J 17:45–51

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lakshman DK, Natarajan SS, Lakshman S, Garrett WM, Dhar AK (2008) Optimized protein extraction methods for proteomic analysis of Rhizoctonia solani. Mycologia 100:867–875

    Article  PubMed  CAS  Google Scholar 

  • Li P, Pei Y, Sang X, Ling Y, Yang Z, He G (2009) Transgenic indica rice expressing a bitter melon (Momordica charantia) class I chitinase gene (McCHIT1) confers enhanced resistance to Magnaporthe grisea and Rhizoctonia solani. Eur J Plant Pathol 125:533–543

    Article  CAS  Google Scholar 

  • Liu L, Kakihara F, Kato M (2004) Characterization of six varieties of Cucumis melo L. based on morphological and physiological characters, including shelf-life of fruit. Euphytica 135:305–313

    Article  Google Scholar 

  • Luria SE, Burrous JW (1957) Hybridization between Escherichia coli and Shigella. J Bacteriol 74:461–476

    PubMed  CAS  Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet–Sanjuan R, Arús P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    Article  PubMed  CAS  Google Scholar 

  • Moreno AB, Peñas G, Rufat M, Bravo JM, Estopà M, Messeguer J, San Segundo B (2005) Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice. Mol Plant Microbe Interact 9:960–972

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Nirala NK, Das DK, Srivatsava PS, Sopory SK, Upadhyaya KC (2010) Expression of a rice chitinase gene enhances antifungal potential in transgenic grapevine (Vitis vinifera L.). Vitis 49(4):181–187

    CAS  Google Scholar 

  • Nookaraju A, Agrawal DC (2012) Enhanced tolerance of transgenic grapevines expressing chitinase and β-1,3-glucanase genes to downy mildew. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-012-0166-1

  • Ntui VO, Thirukkumaran G, Azadi P, Khan RS, Nakamura I, Mii M (2010) Stable integration and expression of wasabi defensin gene in “Egusi” melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternia leaf spot. Plant Cell Rep 29:943–954

    Article  PubMed  CAS  Google Scholar 

  • Nuñez–Palenius HG, Gomez–Lim M, Ochoa–Alejo N, Grumet R, Lester G, Cantliffe DJ (2008) Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol 28:13–55

    Article  PubMed  Google Scholar 

  • Ohnuma T, Taira T, Yamagami T, Aso Y, Ishiguro M (2004) Molecular cloning, functional expression, and mutagenesis of cDNA encoding class I chitinase from rye (Secale cereale) seeds. Biosci Biotechnol Biochem 68:324–332

    Article  PubMed  CAS  Google Scholar 

  • Oldach KH, Becker D, Lorz H (2001) Heterologous expression of the genes mediating enhanced fungal resistance in transgenic wheat. Mol Plant Microbe Interact 14:832–838

    Article  PubMed  CAS  Google Scholar 

  • Punja ZK (2001) Transgenic carrots with enhanced tolerance to fungal pathogens. In: Khachatourians GG, McHughen A, Scorza R, Nip WK, Hui YH (eds) Transgenic plants and crops. Marcel Decker, New York, pp 503–521

    Google Scholar 

  • Robert N, Roche K, Lebeau Y, Breda C, Boulay M, Esnault R, Buffard D (2002) Expression of grapevine chitinase gene in berries and leaves infected by fungal or bacterial pathogen. Plant Sci 162:389–400

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Scher FM, Baker R (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil supressiviness to Fusarium wilt pathogens. Phytopathology 72:1567–1573

    Article  CAS  Google Scholar 

  • Shin S, Mackintosh CA, Lewis J, Heinen SJ, Radmer L, Dill-Macky R, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2008) Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. J Exp Bot 59(9):2371–2378

    Article  PubMed  CAS  Google Scholar 

  • Stepansky A, Kovalski I, Perl–Treves R (1999) Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol 217:313–333

    Article  CAS  Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Wiedemann Merdinoglu S, Geoffroy P, Legrand M, Fritig B (1993) Plant pathogenesis-related proteins and their role in defense against pathogens. Biochimice 75:687–706

    Article  CAS  Google Scholar 

  • Terras FR, Eggermant K, Kovalega V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588

    PubMed  CAS  Google Scholar 

  • Wang Y, Kausch AP, Chandlee JM, Luo H, Ruemmele BA, Browning M, Jackson N, Goldsmith MR (2003) Co-transfer and expression of chitinase, glucanase, and bar genes in creeping bentgrass for conferring fungal disease resistance. Plant Sci 165:497–506

    Article  CAS  Google Scholar 

  • Wu HW, Yu TA, Raja JAJ, Wang HC, Yeh SD (2009) Generation of transgenic oriental melon resistant to Zucchini yellow mosaic virus by an improved cotyledon-cutting method. Plant Cell Rep 28:1053–1064

    Article  PubMed  CAS  Google Scholar 

  • Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S (2005) Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. J Exp Bot 56:1685–1690

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council of Taiwan, Republic of China (98-2321-B- 005-009-MY3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tony J. Fang or Jei-Fu Shaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezirganoglu, I., Hwang, SY., Fang, T.J. et al. Transgenic lines of melon (Cucumis melo L. var. makuwa cv. ‘Silver Light’) expressing antifungal protein and chitinase genes exhibit enhanced resistance to fungal pathogens. Plant Cell Tiss Organ Cult 112, 227–237 (2013). https://doi.org/10.1007/s11240-012-0227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0227-5

Keywords

Navigation