Skip to main content
Log in

Implementing History and Philosophy in Science Teaching: Strategies, Methods, Results and Experiences from the European HIPST Project

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

This paper presents a rationale for utilizing HPS to teach physics and the NoS developed in the course of a project funded by the European Union. A core feature of this approach is formed by the development of historical case studies for the use in lessons. Furthermore, the learners’ perspectives are explicitly taken into account. Teaching methods comprise student-centered activities as creative writing for understanding science and scientists and role-play activities. Emphasis is laid on experimental work which is performed with the help of true-to-the-original replications of historical apparatus, especially built for this purpose. A new characteristic for NoS learning is introduced, namely the reflection corner giving the opportunity to explicitly discussing the relationship between history, knowledge acquisition, and the application of scientific findings. In order to make use of the special skills, creative potentials and experiences of teachers a symbiotic strategy for the development and evaluation process of the teaching material was adopted where a close and long-standing cooperation between science teachers and science educators could be established. On this basis the German partners were able to complete numerous case studies from the fields of mechanics, electricity, magnetism and heat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://hipstwiki.wetpaint.com/.

  2. Abd-El-Khalick and Lederman (2000), Lederman (1992, 2007), McComas et al. (1998).

  3. Eflin et al. (1999), Irzik and Nola (2010), Osborne et al. (2003), Niaz (2001), Smith and Scharmann (1999).

  4. Abd-El-Khalick and Lederman (2000), Galili and Hazan (2001), Howe and Rudge (2005), Irwin (2000), Lin and Chen (2002), Lin et al. (2002), Kubli (1999), Mamlok-Naaman et al. (2005), Olson et al. (2005), Rudge and Howe (2009), Solbes and Traver (2003), Solomon et al. (1992).

  5. See also the activities for teaching about the role of expertise in science advocated by Zemplén (2010).

  6. Preliminary result of an interview study of the authors.

  7. E.g. Heering (2007), Höttecke (2001), Sibum (1995), Sichau (2000a, b).

  8. The instruments mentioned here are those assembled for HIPST. Several others from different branches of science and different centuries have been replicated earlier. See http://www.histodid.uni-oldenburg.de/22139.html.

  9. Please apply to any of the authors for getting a copy. Further films have been produced by the European projects STeT (http://www.histodid.uni-oldenburg.de/30702.html; 10-05-2010) and MAP(http://www.histodid.uni-oldenburg.de/22886.html; 10-05-2010).

  10. Eilks et al. (2004), Lindner (2008), Ostermeier et al. (2010).

References

  • Abd-El-Khalick, F., & Lederman, N. G. (2000). The influence of history of science courses on students’ views of nature of science. Journal of Research in Science Teaching, 37(10), 1057–1095.

    Article  Google Scholar 

  • Akerson, V. L., & Abd-El-Khalick, F. (2003). Teaching elements of nature of science: A yearlong case study of a fourth-grade teacher. Journal of Research in Science Teaching, 40(10), 1025–1049.

    Article  Google Scholar 

  • Allchin, D. (1992). History as a tool in science education. In: 2nd International history and philosophy of science and science teaching conference, Kingston, ON (Reprint of Conspicuous history, clandestine history: A spectrum of simulation strategies). Minneapolis, MN: SHiPS Resource Center. Retrieved October 4, 2010, from www.ships.umn.edu/tool.htm.

  • Allchin, D. (2004). Pseudohistory and pseudoscience. Science & Education, 13, 179–195.

    Article  Google Scholar 

  • Aubusson, P. J., & Fogwill, S. (2006). Role play as analogical modelling in science. In P. J. Aubusson, A. G. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (Vol. 30), Series Contemporary Trends and Issues in Science Education. Springer.

  • Aubusson, P. J., Fogwill, S., Barr, R., & Perkovic, L. (1997). What happens when students do simulation-role-play in science? Research in Science Education, 27(4), 565–579.

    Article  Google Scholar 

  • Bannerman, M. D. (2008). Continuum—selecting inquiry-based experiences to promote a deeper understanding of the nature of science. Iowa Science Teachers Journal, 35(2), 10–14.

    Google Scholar 

  • Bartholomew, H., Osborne, J. F., & Ratcliffe, M. (2004). Teaching students ideas-about-science: Five dimensions of effective practice. Science Education, 88, 655–682.

    Article  Google Scholar 

  • Bell, P., & Linn, M. C. (2002). Beliefs about science: How does science instruction contribute? In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology. The psychology of beliefs about knowledge and knowing. Mahwah, NJ, London: Lawrence Erlbaum.

    Google Scholar 

  • BouJaoude, S., Sowwan, S., & Abd-El-Khalick. F. (2003). The effect of using drama in science teaching on students’ conceptions of nature of science. Paper presented on The ESERA 2003 Conference Research and the Quality of Science Education. Retrieved June 10, 2008, from http://www1.phys.uu.nl/esera2003/programme/pdf%5C039S.pdf.

  • Butterfield, H. (1931). The Whig interpretation of history. London: Bell.

    Google Scholar 

  • Chang, H. (2009). We have never been Whiggish (about phlogiston). Centaurus, 51(4), 239–264.

    Article  Google Scholar 

  • Clough, M. P. (2006). Learners’ responses to the demands of conceptual change: Considerations for effective nature of science instruction. Science Education, 15, 463–494.

    Article  Google Scholar 

  • Danby, M., & Upitis, R. (1988). School theatre: A question of ownership. Speech and Drama, 37(2), 5–8.

    Google Scholar 

  • Dennen, P. (2004). Cognitive apprenticeship in educational practice: Research on scaffolding, modeling, mentoring, and coaching as instructional strategies. In D. Jonassen (Ed.), Handbook of research on educational communications and technology. Mahwah, NJ: Lawrence Erlbaum. Retrieved August 16, 2010, from http://www.aect.org/edtech/ed1/31.pdf.

  • Duit, R., Gropengießer, H., & Kattmann, U. (2005). Towards science education research that is relevant for improving practice: The model of educational reconstruction. In H. Fischer (Ed.), Developing standards in research on science education. The ESERA Summer School 2004 (pp. 1–9). London: Taylor & Francis.

    Google Scholar 

  • Duschl, R. A. (1990). Restructuring science education. New York: Teachers College Press.

    Google Scholar 

  • Duveen, J., & Solomon, J. (1994). The great evolution trial: Use of role-play in the classroom. Journal of Research in Science Teaching, 31(5), 575–582.

    Article  Google Scholar 

  • Eflin, J. T., Glennan, S., & Reisch, G. (1999). Comments and criticism. The nature of science: a perspective from the philosophy of science. Journal of Research in Science Teaching, 36(1), 107–116.

    Article  Google Scholar 

  • Eilks, I., Parchmann, I., Gräsel, C., & Ralle, B. (2004). Changing teachers’ attitudes and professional skills by involving teachers into projects of curriculum innovation in Germany. In B. Ralle & I. Eilks (Eds.), Quality in practice oriented research in science education (pp. 29–40). Aachen: Shaker.

    Google Scholar 

  • Galili, I., & Hazan, A. (2001). The effect of a history-based course in optics on students’ views about science. Science & Education, 10, 7–32.

    Article  Google Scholar 

  • Gräsel, C., & Parchmann, I. (2004). Implementationsforschung—oder: der steinige Weg, Unterricht zu verändern (Research on implementation: The problems of changing teaching and learning). Unterrichtswissenschaft, 32(3), 196–214.

    Google Scholar 

  • Guericke, O. V. (1672/1968). Neue (sogenannte) Magdeburger Versuche über den leeren Raum : nebst Briefen, Urkunden und anderen Zeugnissen seiner Lebens- und Schaffensgeschichte (trans. & edited by H. Schimak). Düsseldorf: VDI-Verlag.

  • Hart, C., Mulhall, P., Berry, A., Loughran, J., & Gunstone, R. (2000). What is the purpose of this experiment? Or can students learn something from doing experiments? Journal of Research in Science Teaching, 37(7), 655–675.

    Article  Google Scholar 

  • Heering, P. (2000). Getting shocks: Teaching secondary school physics through history. Science & Education, 9(4), 363–373.

    Article  Google Scholar 

  • Heering, P. (2003a). History–science–epistemology: On the use of historical experiments in physics teacher training. In W. F. McComas (Ed.), Proceedings of the 6th IHPST conference Denver 2001. Avaible from the IHPST Group, IHPST.ORG.

  • Heering, P. (2003b). Rejected historical experiments and their use for science teacher training. In D. Metz (Ed.), Proceedings of the 7th IHPST conference Winnipeg 2003.

  • Heering, P. (2007). Public experiments and their analysis with the replication method. Science & Education, 16, 637–645.

    Google Scholar 

  • Heering, P., & Müller, F. (2002). Cultures of experimental practice—an approach in a museum. Science & Education, 11, 203–214.

    Article  Google Scholar 

  • Hochadel, O. (2006). The business of experimental physics: Instrument makers and itinerant lecturers in the German enlightenment. Science & Education. doi:10.1007/s11191-006-9017-y.

    Google Scholar 

  • Hodge, R. (2006). What Europeans really think (and know) about science and technology. Science in School, issue 3, Winter 2006: 71–77, Retrieved April 17, 2007, from http://www.scienceinschool.org/2006/issue3/eurobarometer/.

  • Hoffman, L., Häußler, P., & Lehrke, M. (1998). Die IPN-Interessenstudie Physik. Kiel: IPN.

    Google Scholar 

  • Höttecke, D. (2000). How and what can we learn from replicating historical experiments? A case study. Science & Education, 9(4), 343–362.

    Article  Google Scholar 

  • Höttecke, D. (2001). Die Natur der Naturwissenschaften historisch verstehen. Fachdidaktische und wissenschaftshistorische Untersuchungen (Understanding the nature of science historically. Didactical and historical investigations). Berlin: Logos-Verlag.

    Google Scholar 

  • Höttecke, D. (2007). Historisch orientierter Physikunterricht (Teaching physics with history). In S. Mikelskis-Seifert & T. Rabe (Eds.), Physikmethodik. Handbuch für die Sekundarstufe I und II. Berlin: Cornelsen Verlag Scriptor.

    Google Scholar 

  • Höttecke, D., & Rieß, F. (2009). Developing and implementing case studies for teaching science with the help of history and philosophy. Framework and critical perspectives on “HIPST”a European approach for the inclusion of history and philosophy in science teaching. Paper presented at the Tenth International History, Philosophy, Sociology & Science Teaching Conference (IHPST), South Bend, USA 2009, June 24–88, 2009, Retrieved January 04, 2010, from http://www.nd.edu/~ihpst09/papers/Hoettecke_Paper_IHPST09.pdf.

  • Höttecke, D., & Silva, C. C. (2010). Why implementing history and philosophy in school science education is a challenge—an analysis of obstacles. Science & Education. doi:10.1007/s11191-010-9285-4.

    Google Scholar 

  • Huberman, M. (1993). Linking the practitioner and researcher communities for school improvement. School Effectiveness and School Improvement, 4(1), 1–16.

    Article  Google Scholar 

  • Irwin, A. R. (2000). Historical case studies: Teaching the nature of science in context. Science Education, 84(1), 5–26.

    Article  Google Scholar 

  • Irzik, G., & Nola, R. (2010). A family resemblance approach to the nature of science for science education. Science & Education. doi:10.1007/s11191-010-9293-4.

    Google Scholar 

  • Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39(7), 551–578.

    Article  Google Scholar 

  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.

    Article  Google Scholar 

  • Kubli, F. (1999). Historical aspects in physics teaching: Using Galileo’s work in a new swiss project. Science & Education, 8(2), 137–150.

    Article  Google Scholar 

  • Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of research. Journal of Research in Science Teaching, 29(4), 331–359.

    Article  Google Scholar 

  • Lederman, N. G. (2004). Syntax of nature of science within inquiry and science instruction. In L. B. Flick (Ed.), Scientific inquiry and nature of science. implications for teaching, learning, and teacher education (pp. 301–317). Dordrecht [u.a.]: Kluwer.

    Google Scholar 

  • Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research in science education (pp. 831–879). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of Nature of Science Questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497–521.

    Article  Google Scholar 

  • Lin, H.-S., & Chen, C.-C. (2002). Promoting preservice chemistry teachers’ understanding about the nature of science through history. Journal of Research in Science Teaching, 39(9), 773–792.

    Article  Google Scholar 

  • Lin, H.-S., Hung, J.-Y., & Hung, S.-C. (2002). Using the history of science to promote students’ problem-solving ability. International Journal of Science Education, 24(5), 453–464.

    Article  Google Scholar 

  • Lindner, M. (2008). Lehrerfortbildung heute—Sind Lehrkräfte fortbildungsresistent? Erfahrungen aus den Programmen SINUS und CHiK als Modelle der Lehrerfortbildung (Professional development today—Are teachers resistant to change? Experiences based on the SINUS and CHIK programs as models for professional development). MNU, 61(3), 164–168.

    Google Scholar 

  • Loughran, J., Berry, A., Mulhall, P., & Gunstone, D. (2003). Teaching and testing about the nature of science: Problems in attempting to determine students’ perceptions 4 (1). Asia-Pacific Forum on Science Learning and Teaching, 4(1), 1–16.

    Google Scholar 

  • Mamlok-Naaman, R., Ben-Zvi, R., Hofstein, A., Menis, J., & Erduran, S. (2005). Learning science through a historical approach: Does it affect the attitudes of non-science-oriented students towards science? International Journal of Science & Math Education, 3(3), 485–507.

    Article  Google Scholar 

  • Matthews, M. R. (1994). Science teaching. The role of history and philosophy of science. New York, London: Routledge.

    Google Scholar 

  • McComas, W. F., Clough, M. P., & Almazroa, H. (1998). The role and character of the nature of science in science education. In W. F. McComas (Ed.), The nature of science in science education. Rationales and strategies. Dordrecht, Boston, London: Kluwer.

    Google Scholar 

  • McKernan, J. (2006). Curriculum action research. A handbook of methods and resources for the reflective practitioner. London, New York: Routledge.

    Google Scholar 

  • McSharry, G., & Jones, S. (2000). Role-play in science teaching and learning. School Science Review, 82(298), 73–82.

    Google Scholar 

  • Merzyn, G. (2008). Naturwissenschaften, Mathematik, Technik—immer unbeliebter? Die Konkurrenz von Schulfächern um das Interesse der Jugend im Spiegel vielfältiger Untersuchungen. Baltmannsweilter: Schneider-Verlag.

    Google Scholar 

  • Monk, M., & Osborne, J. (1997). Placing the history and philosophy of science on the curriculum: A model of development of pedagogy. Science Education, 81(4), 405–425.

    Article  Google Scholar 

  • Niaz, M. (2001). Understanding nature of science as progressive transitions in heuristic principles. Science Education, 85, 684–690.

    Article  Google Scholar 

  • Niaz, M., & Rodriguez, M. A. (2002). Improving learning by discussing controversies in 20th century physics. Physics Education, 37(1), 59–63.

    Article  Google Scholar 

  • Ødegaard, M. (2003). Dramatic science. A critical review of drama in science education. Studies in Science Education, 39, 75–102.

    Article  Google Scholar 

  • Olson, J. K., Clough, M. P., Bruxvoort, C. N., & Vanderlinden, D. W. (2005). Improving students’ nature of science understanding through historical short stories in an introductory geology course. Paper prepared for the 8th international history, philosophy, sociology & science teaching conference (IHPST), Leeds, UK 2005, July 15–18, 2005, Retrieved January 10, 2007, from http://www.ihpst2005.leeds.ac.uk/papers/Olson_Clough_Bruxvoort_Vanderlinden.pdf.

  • Osborne, J. (2003). Attitude toward science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079.

    Article  Google Scholar 

  • Osborne, J., & Collins, S. (2001). Pupils’ view of the role and value of the science curriculum: A focus-group-study. International Journal of Science Education, 23(5), 441–467.

    Article  Google Scholar 

  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.

    Article  Google Scholar 

  • Ostermeier, C., Prenzel, M., & Duit, R. (2010). Improving science and mathematics instruction: The SINUS project as an example for reform as teacher professional development. International Journal of Science Education, 32(3), 303–327.

    Article  Google Scholar 

  • Petty, G. (2009). Evidence-based teaching: A practical approach (2nd ed.). London: Nelson Thornes Ltd.

    Google Scholar 

  • Pickering, A. (1989). Living in the material world: On realism and experimental practice. In D. Gooding, T. Pinch, & S. Schaffer (Eds.), The uses of experiment (pp. 275–297). Cambridge: Cambridge University Press.

    Google Scholar 

  • Priestley, J. (1775/1966). History and present state of electricity (Vol. 2). New York, London: Johnson Reprint Corporation.

  • Reichenbach, H. (1938). Experience and prediction. Chicago: University of Chicago.

    Book  Google Scholar 

  • Rieß, F. (2000). History of physics in science teacher training in Oldenburg. Science & Education, 9, 399–402.

    Article  Google Scholar 

  • Rudge, D. W., & Howe, E. M. (2009). An explicit and reflective approach to the use of history to promote understanding of the nature of science. Science & Education, 18, 561–580.

    Article  Google Scholar 

  • Scheller, I. (1998). Szenisches Spiel: Handbuch für die pädagogische Praxis. Berlin: Cornelsen-Scriptor.

    Google Scholar 

  • Schwartz, R. S., & Crawford, B. A. (2004). Authentic scientific inquiry as context for teaching nature of science. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science. Implications for teaching, learning, and teacher education (pp. 331–355). Dordrecht [u.a.]: Kluwer.

    Google Scholar 

  • Shavelson, R. J. (1983). Review of research on teachers’ pedagogical judgments, plans, and decisions. Elementary School Journal, 83(4), 392–413.

    Article  Google Scholar 

  • Sibum, H. O. (1995). Reworking the mechanical value of heat: Instruments of precision and gestures of accuracy in early Victorian England. Studies in History and Philosophy of Science, 26, 73–106.

    Article  Google Scholar 

  • Sichau, C. (2000a). Die Replikationsmethode: Zur Rekonstruktion historischer Experimente. In P. Heering, F. Rieß, & C. Sichau (Eds.), Im Labor der Physikgeschichte—Zur Untersuchung historischer Experimentalpraxis. Oldenburg: BIS der Carl von Ossietzky Universität.

    Google Scholar 

  • Sichau, C. (2000b). Practicing helps: Thermodynamics, history, and experiment. Science & Education, 9, 389–398.

    Article  Google Scholar 

  • Smith, M., & Scharmann, L. C. (1999). Defining versus describing the nature of science: A pragmantic analysis for classroom teachers and science educators. Science Education, 83(4), 493–509.

    Article  Google Scholar 

  • Snyder, J., Bolin, F., & Jungmann, A. (1992). Curriculum implementation. In P. W. Jachson (Ed.), Handbook of research on curriculum (pp. 402–435). New York: Macmillan.

    Google Scholar 

  • Solbes, J., & Traver, M. (2003). Against a negative image of science: History of science and the teaching of physics and chemistry. Science & Education, 12, 703–717.

    Article  Google Scholar 

  • Solomon, J., Duveen, J., Scot, L., & McCarthy, S. (1992). Teaching about the nature of science through history: Action research in the classroom. Journal of Research in Science Teaching, 29(4), 409–421.

    Article  Google Scholar 

  • Solomon, J., Scot, L., & Duveen, J. (1996). Large-scale exploration of pupils’ understanding of the nature of science. Science Education, 80(5), 493–508.

    Article  Google Scholar 

  • Steinle, F. (2004). Exploratives experimentieren. Charles Dufay und die zwei Elektrizitäten. Physik Journal, 3(6), 47–52.

    Google Scholar 

  • Stinner, A., McMillan, B. A., Metz, D., Jilek, J. M., & Klassen, S. (2003). The renewal of case studies in science education. Science & Education, 12, 617–643.

    Article  Google Scholar 

  • Taylor, C. A. (1987). Introduction. In C. A. Taylor (Ed.), Science education and information transfer. Oxford: Pergamon.

    Google Scholar 

  • Tsai, C.-C. (1999). Scientific epistemological views and learning in laboratory activities. International Journal of Science Education, 83, 654–674.

    Google Scholar 

  • van der Valk, T., & de Jong, O. (2009). Scaffolding science teachers in open-inquiry teaching. International Journal of Science Education, 31(6), 829–850.

    Article  Google Scholar 

  • Zemplén, G. Á. (2009). Putting sociology first—reconsidering the role of the social in ‘nature of science’ education. Science & Education, 18(5), 525–559.

    Article  Google Scholar 

  • Zemplén, G. Á. (2010). A 6-week nature of science module incorporating social and epistemic elements. Case study developed within the project HIPST, Retrieved October 05, 2010, from http://hipstwiki.wetpaint.com/page/hipst+developed+cases.

Download references

Acknowledgments

This work has been funded by the 7th Framework Program of the European Commission. We are also thankfully indebted to the teachers and collaborators in the German thematic working group namely Ulf Drüding, Wolfgang Engels, Olaf Kramer, Anna Launus, Veronika Maiseyenka, Christina Mocha, Michael Nienhausen, Harald Schütt, Roland Steiner, Till Stephan and many others. They all have contributed a lot to the development of case studies and the success of the HIPST project in general. Intensive discussion among the HIPST partners on national as well as on international level has contributed to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Höttecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höttecke, D., Henke, A. & Riess, F. Implementing History and Philosophy in Science Teaching: Strategies, Methods, Results and Experiences from the European HIPST Project. Sci & Educ 21, 1233–1261 (2012). https://doi.org/10.1007/s11191-010-9330-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-010-9330-3

Keywords

Navigation