Skip to main content
Log in

Disintegration of positive isometric group representations on \(\varvec{\mathrm {L}^{p}}\)-spaces

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let G be a Polish locally compact group acting on a Polish space \({{X}}\) with a G-invariant probability measure \(\mu \). We factorize the integral with respect to \(\mu \) in terms of the integrals with respect to the ergodic measures on X, and show that \(\mathrm {L}^{p}({{X}},\mu )\) (\(1\le p<\infty \)) is G-equivariantly isometrically lattice isomorphic to an \({\mathrm {L}^p}\)-direct integral of the spaces \(\mathrm {L}^{p}({{X}},\lambda )\), where \(\lambda \) ranges over the ergodic measures on X. This yields a disintegration of the canonical representation of G as isometric lattice automorphisms of \(\mathrm {L}^{p}({{X}},\mu )\) as an \({\mathrm {L}^p}\)-direct integral of order indecomposable representations. If \(({{X}}^\prime ,\mu ^\prime )\) is a probability space, and, for some \(1\le q<\infty \), G acts in a strongly continuous manner on \(\mathrm {L}^{q}({{X}}^\prime ,\mu ^\prime )\) as isometric lattice automorphisms that leave the constants fixed, then G acts on \(\mathrm {L}^{p}({{X}}^{\prime },\mu ^{\prime })\) in a similar fashion for all \(1\le p<\infty \). Moreover, there exists an alternative model in which these representations originate from a continuous action of G on a compact Hausdorff space. If \(({{X}}^\prime ,\mu ^\prime )\) is separable, the representation of G on \(\mathrm {L}^p(X^\prime ,\mu ^\prime )\) can then be disintegrated into order indecomposable representations. The notions of \({\mathrm {L}^p}\)-direct integrals of Banach spaces and representations that are developed extend those in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliprantis, C.D., Burkinshaw, O.: Principles of Real Analysis, 3rd edn. Academic Press. Inc., San Diego, CA (1998)

    MATH  Google Scholar 

  2. Becker, H., Kechris, A.S.: The Descriptive Set Theory of Polish Group Actions, Volume 232 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  3. Bogachev, V.I.: Measure Theory, vol. I, II. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  4. Cohn, D.L.: Measure Theory. Birkhäuser Boston, Inc., Boston, MA (1993)

  5. de Jeu, M., Messerschmidt, M.: Crossed products of Banach algebras. III. To appear in Dissertationes Math. https://arxiv.org/abs/1306.6290 (2013)

  6. de Jeu, M., Wortel, M.: Positive representations of finite groups in Riesz spaces. Internat. J. Math. 23(7), 1250076, 28 (2012)

    MathSciNet  MATH  Google Scholar 

  7. de Jeu, M., Wortel, M.: Compact groups of positive operators on Banach lattices. Indag. Math. (N.S.) 25(2), 186–205 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Jeu, M., Ruoff, F.: Positive representations of \(C_0(X)\), I. Ann. Funct. Anal. 7(1), 180–205 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dixmier, J.: C\(^*\)-algebras. North-Holland Publishing Co., Amsterdam-New York-Oxford (1977). Translated from the French by Francis Jellett, North-Holland Mathematical Library, vol. 15

  10. Eisner, T., Farkas, B., Haase, M., Nagel, R.: Operator Theoretic Aspects of Ergodic Theory, Volume 272 of Graduate Texts in Mathematics. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  11. Farrell, R.H.: Representation of invariant measures. Illinois. J. Math. 6, 447–467 (1962)

    MathSciNet  MATH  Google Scholar 

  12. Fleming, R.J., Jamison, J.E.: Isometries on Banach Spaces: Function Spaces, Volume 129 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL (2003)

    Google Scholar 

  13. Folland, G.B.: A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1995)

    MATH  Google Scholar 

  14. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics (New York), 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  15. Haydon, R., Levy, M., Raynaud, Y.: Randomly Normed Spaces, Volume 41 of Travaux en Cours (Works in Progress). Hermann, Paris (1991)

    Google Scholar 

  16. Kechris, A.S.: Classical Descriptive Set Theory, Volume 156 of Graduate Texts in Mathematics. Springer, New York (1995)

    Book  Google Scholar 

  17. Maharam, D.: Decompositions of measure algebras and spaces. Trans. Amer Math. Soc. 69, 142–160 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nevo, A.: Pointwise ergodic theorems for actions of groups. In: Hasselblatt, B., Katok, A. (eds.) Handbook of Dynamical Systems, vol. 1B, pp. 871–982. Elsevier B. V., Amsterdam (2006)

  19. Nielsen, O.A.: Direct Integral Theory, Volume 61 of Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, Inc., New York (1980)

    Google Scholar 

  20. Ryan, R.A.: Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics. Springer, London (2002)

    Book  Google Scholar 

  21. Seda, A.K., Wickstead, A.W.: On invariant measures for compact transformation groups. Ann. Soc. Sci. Bruxelles Sér. I. 90(4), 277–283 (1976)

    MathSciNet  MATH  Google Scholar 

  22. Varadarajan, V.S.: Groups of automorphisms of Borel spaces. Trans. Amer Math. Soc. 109, 191–220 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wickstead, A.W.: Banach lattice algebras: some questions, but very few answers. Positivity (2017). doi:10.1007/s11117-015-0387-8

  24. Wickstead, A.W.: Two dimensional unital Riesz algebras, their representations and norms. Positivity (2017). doi:10.1007/s11117-015-0349-1

  25. Zaanen, A.C.: Introduction to Operator Theory in Riesz Spaces. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  26. Zakrzewski, P.: Measures on algebraic-topological structures. In: Pap, E. (ed.) Handbook of measure theory, vol. I, II, pp. 1091–1130. North-Holland, Amsterdam (2002)

Download references

Acknowledgements

We thank Markus Haase for pointing out various results in [10], specifically [10, Theorem 15.27], and for discussions on the proofs of the latter result and our Lemma 5.11. The authors are indebted to the anonymous referee for pointing out the possible potential of Maharam’s work in [17] for the current line of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Rozendaal.

Additional information

During the preparation of this manuscript Jan Rozendaal was supported by NWO-grant 613.000.908.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jeu, M., Rozendaal, J. Disintegration of positive isometric group representations on \(\varvec{\mathrm {L}^{p}}\)-spaces. Positivity 21, 673–710 (2017). https://doi.org/10.1007/s11117-017-0499-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-017-0499-4

Keywords

Mathematics Subject Classification

Navigation