Skip to main content

Advertisement

Log in

Zinc nutrition in rice production systems: a review

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Zinc (Zn) deficiency is one of the important abiotic factors limiting rice productivity worldwide and also a widespread nutritional disorder affecting human health. Given that rice is a staple for populations in many countries, studies of Zn dynamics and management in rice soils is of great importance.

Scope

Changing climate is forcing the growers to switch from conventional rice transplanting in flooded soils to water-saving cultivation, including aerobic rice culture and alternate wetting and drying system. As soil properties are changed with altered soil and water management, which is likely to affect Zn solubility and plant availability and should be considered before Zn management in rice. In this review, we critically appraise the role of Zn in plant biology and its dynamics in soil and rice production systems. Strategies and options to improve Zn uptake and partitioning efficiency in rice by using agronomic, breeding and biotechnological tools are also discussed.

Conclusions

Although soil application of inorganic Zn fertilizers is widely used, organic and chelated sources are better from economic and environmental perspectives. Use of other methods of Zn application (such as seed treatment, foliar application etc., in association with mycorrhizal fungi) may improve Zn-use efficiency in rice. Conventional breeding together with modern genomic and biotechnological tools may result in development of Zn-efficient rice genotypes that should be used in conjunction with judicious fertilization to optimize rice yield and grain Zn content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abilay WP, De Datta SK (1978) Management practices for correcting Zn deficiency in transplanted and direct seeded wet land rice. Philipp J Crop Sci 3:191–194

    Google Scholar 

  • Adhikari T, Rattan RK (2007) Distribution of Zn fractions in some major soils of India and impact on nutrition of rice. Commun Soil Sci Plant Anal 38:2779–2798

    Article  CAS  Google Scholar 

  • Alloway BJ (2003) Zinc in soils and crop nutrition. International Zinc Association. http://zinc-crops.org. p 114

  • Alloway BJ (2008) Zinc in soils and crop nutrition, 2nd edn. IZA Brussels, Belgium

    Google Scholar 

  • Alloway BJ (2009) Soils factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31(5):537–548

    Article  PubMed  CAS  Google Scholar 

  • Almendros P, Gonzalez D, Obrador A, Alvarez JM (2008) Residual zinc forms in weakly acidic and calcareous soils after an oilseed flax crop. Geophysical Research Abstracts. EGU General Assembly. 10, EGU2008-A-12479

  • Anderson WB (1972) Zinc in soils and plant nutrition. Adv Agron 24:147–186

    Article  Google Scholar 

  • Arnold T, Kirk GJD, Wissuwa M, Frei M, Zhao FJ, Mason TFD, Weiss DJ (2010) Evidence for the mechanisms of zinc uptake by rice using isotope fractionation. Plant Cell Environ 33:380–381

    Article  CAS  Google Scholar 

  • Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14:271–313

    Article  PubMed  CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability, 2nd edn. Wiley, New York

    Google Scholar 

  • Beebout SJ, Tuyogon D, Rubianes F, Castillo O, Larazo W, Bunquin M, Laureles E (2010) Improved zinc management strategies for rice scientists and farmers. In: Proceedings of 2010 International Annual Meetings of ASA-CSSA-SSSA, October 31 to November 04, 2010, Long Beach, California, USA

  • Beebout SJ, Francis HCR, Dennis SJT, Ranee CM (2011) Reasons for variation in rice (Oryza sativa) grain zinc response to zinc fertilization. In: 3rd International Zinc Symposium 10–14 October 2011, Hyderabad, India

  • Bhaduri D, Purakayastha TJ (2011) Soil available Zn: a potent soil quality indicator in a rice–wheat system. 3rd International Zinc Symposium 10-14 October 2011, Hyderabad, India

  • Bostick BC, Hansel CM, La Force MJ, Fendorf S (2001) Seasonal fluctuations in Zinc speciation within a contaminated wetland. Environ Sci Technol 35:3823–3829

    Article  PubMed  CAS  Google Scholar 

  • Bouman BAM, Tuong TP (2001) Field water management tosave water and increase its productivity in irrigated rice. Agric Water Manag 49:11–30

    Article  Google Scholar 

  • Bouman BAM, Peng S, Castañeda AR, Visperas RM (2005) Yield and water use of irrigated tropical aerobic rice systems. Agric Water Manag 74:87–105

    Article  Google Scholar 

  • Brar MS, Sekhon GS (1976) Effect of Fe and Zn on the availability of micronutrients under flooded and unflooded condition. J Indian Soc Soil Sci 24:446–454

    CAS  Google Scholar 

  • Broadbent FE, Mikkelsen DS (1968) Influence of placement on uptake of tagged nitrogen by rice. Agron J 60:674–677

    Article  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko L, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  PubMed  CAS  Google Scholar 

  • Brown PH, Cakmak I, Zhang Q (1993) Form and function of zinc in plants. Chap. 7. In: Bobson AD (ed) Zinc in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 90–106

    Google Scholar 

  • Cakmak I (2000a) Role of zinc in protecting plant cells from reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Cakmak I (2000b) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification. Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I (2009) Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India. J Trace Elem Med Biol 23(4):281–289

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Marschner H (1998) Enhanced superoxide radical production in roots of Zn deficient plants. J Exp Bot 39:1449–1460

    Article  Google Scholar 

  • Cakmak I, Ekiz H, Yilmaz A, Torun B, Koleli N, Gultekin I, Alkan A, Eker S (1997) Differential response of rye, triticale, bread and durum wheats to zinc deficiency in calcareous soils. Plant Soil 188:1–10

    Article  CAS  Google Scholar 

  • Cakmak I, Kalayci M, Ekiz H, Braun HJ, Yilmaz A (1999) Zinc deficiency as an actual problem in plant and human nutrition in Turkey: a NATO Science for Stability Project. Field Crops Res 60:175–188

    Article  Google Scholar 

  • Carbonell-Barrachina AA, Jugsujinda A, Burlo F, Delaune RD, Patrick WH (2000) Arsenic chemistry in municipal sewage sludge as affected by redox potential and pH. Water Res 34:216–224

    Article  CAS  Google Scholar 

  • Cayton MTC, Reyes ED, Neue HU (1985) Effect of zinc ferilisation on the mineral nutrition of rices differing in tolerance to zinc deficiency. Plant Soil 87:319–327

    Article  CAS  Google Scholar 

  • Chand M, Randhawa NS, Sinha MK (1980) Effect of gypsum, press-mud, fulvic acid and zinc sources on yield and zinc uptake by rice crop in a saline sodic soil. Plant Soil 55:17–24

    Article  CAS  Google Scholar 

  • Chand M, Randhawa NS, Bhumbla DR (1981) Effectiveness of zinc chelates in zinc nutrition of greenhouse rice crop in a saline sodic soil. Plant Soil 59:217–225

    Article  CAS  Google Scholar 

  • Chang H-B, C-Win Lin, Huang HJ (2005) Zinc induced cell death in rice (Oryza sativa L.) roots. Plant Growth Regul 46:261–266

    Article  CAS  Google Scholar 

  • Chatterjee AK, Mandal LN, Haldar M (1982) Interaction of Zinc and Phosphorus in relation to micronutrient nutrition of rice plant at two different growth stages. Z Pflanzenernaehr Bodenk 145:460–469

    Article  CAS  Google Scholar 

  • Chen W, Yang X, He Z, Feng Y, Hu F (2008a) Differential changes in photosynthetic capacity, 77 K chlorophyll fluorescence and chloroplast ultrastructure between Zn-efficient and Zn-inefficient rice genotypes (Oryza sativa) under low zinc stress. Physiol Plant 132:89–101

    Article  PubMed  CAS  Google Scholar 

  • Chen WR, Feng Y, Chao YE (2008b) Genomic analysis and expression pattern of OsZIP1, OsZIP3 and OsZIP4 in two rice (Oryza sative L.) genotypes with different zinc efficiency. Russ J Plant Physiol 55:400–409

    Article  CAS  Google Scholar 

  • Chen XP, Kong WD, He JZ, Liu WJ, Smith SE, Smith FA, Zhu YG (2008c) Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice? J Plant Nutr Soil Sci 171:193–199

    Article  CAS  Google Scholar 

  • Chen W, He ZL, Yang X, Feng Y (2009) Zinc efficiency is correlated with root morphology, ultrastructure, and antioxidative enzymes in rice. J Plant Nutr 32:287–305

    Article  CAS  Google Scholar 

  • Christianson DW (1991) Structural biology of zinc. Adv Protein Chem 42:281–355

    Article  PubMed  CAS  Google Scholar 

  • De Datta SK (1981) Principles and practices of rice production. John Wiley and Sons, New York

  • DellaPenna D (1999) Nutritional genomics: manipulating plant micronutrients to improve human health. Science 85:375–379

    Article  Google Scholar 

  • Depar N, Rajpar I, Memon MY, Imtiaz M, Zia-ul-hassan (2011) Mineral nutrient densities in some domestic and exotic rice genotypes. Pak J Agric Agril Eng Vet Sci 27:134–142

    Google Scholar 

  • Dittert K, Lin S, Kreye C, Zheng XH, Xu YC, Lu SJ, Huang Y, Shen QR, Fan XL, Sattelmacher B (2002) Saving water with ground-cover rice production systems (GCRPS) at the price of increased greenhouse gas emissions? In: Bouman BAM, Hengsdijk H, Hardy B, Bindraban PS, Tuong TP, Ladha JK (eds) Proceedings of the International Workshop on Water-wise Rice Production Los Banos, Philippines, 8–11 April 2002. International Rice Research Institute, Los Banos, p 365

    Google Scholar 

  • Dobermann A, Fairhurst TH (2000) Nutrient disorders and nutrient management. Potash and Phosphate Institute, PPI of Canada and International Rice Research Institute, Singapore, 192 pp

  • Eghball B, Ginting D, Gilley JE (2004) Residual effects of manure and compost applications on corn production and soil properties. Agron J 96:442–447

    Google Scholar 

  • Englbrecht CC, Schoof H, Böhm S (2004) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5(1):39

    Google Scholar 

  • Erenoglu EB, Kutman UB, Ceylan Y, Yildiz B, Cakmak I (2011) Improved nitrogen nutrition enhances root uptake, root to-shoot translocation and remobilization of zinc (65Zn) in wheat. Phytol 189:438–448

    Article  CAS  Google Scholar 

  • Fageria NK (2001a) Screening method of lowland rice genotypes for zinc uptake efficiency. Sci Agric 58:623–626

    Article  CAS  Google Scholar 

  • Fageria NK (2001b) Nutrient management for upland rice production and sustainability. Commun Soil Sci Plant Anal 32:2603–2629

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC, Clark RB (2002) Micronutrients in crop production. Adv Agron 77:185–268

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A (2006) Priming of field-sown rice seed enhances germination, seedling establishment, allometry and yield. Plant Growth Regul 49:285–294

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Ahmad N (2007) Improving the performance of transplanted rice by seed priming. Plant Growth Regul 51:129–137

    Article  CAS  Google Scholar 

  • Farooq M, Kobayashi NK, Wahid A, Ito O, Basra SMA (2009) Strategies for producing more rice with less water. Adv Agron 101:351–388

    Article  Google Scholar 

  • Farooq M, Rehman A, Aziz T, Habib M (2011a) Boron nutripriming improves the germination and early seedling growth of rice (Oryza sativa L.). J Plant Nutr 34:1507–1515

    Article  CAS  Google Scholar 

  • Farooq M, Siddique KHM, Rehman H, Aziz T, Lee D-J, Wahid A (2011b) Rice direct seeding: experiences, challenges and opportunities. Soil Till Res 111:87–98

    Article  Google Scholar 

  • Farooq M, Wahid A, Siddique KHM (2012) Micronutrients application through seed treatments - a review. J Soil Sci Plant Nutr 12:125–142

    Article  Google Scholar 

  • Forno DA, Yoshida S, Asher CJ (1975) Zinc deficiency in rice I. Soil factors associated with the deficiency. Plant Soil 42:537–550

    Article  CAS  Google Scholar 

  • Fox TC, Guerinot ML (1998) Molecular biology of cation transport in plants. Annu Rev Plant Physiol Plant Mol Biol 49:669–696

    Article  PubMed  CAS  Google Scholar 

  • Franzluebbers AJ, Hons FM (1996) Soil-profile distribution of primary and secondary plant-available nutrients under conventional and no tillage. Soil Till Res 39:229–239

    Article  Google Scholar 

  • Frossard E, Bucher M, Mozafar FA, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants of human nutrition. J Sci Food Agric 80:861–879

    Article  CAS  Google Scholar 

  • Gao XP (2007) Bioavailability of zinc to aerobic rice. Ph.D. thesis, Wageningen University, Wageningen, The Netherlands, 124 pp

  • Gao S, Tanji KK, Scardaci SC, Chow AT (2002) Comparison of redox indicators in a paddy soil during rice growing season. Soil Sci Soc Am J 66:805–817

    Article  CAS  Google Scholar 

  • Gao XP, Zou C, Zhang F, van der Zee SETM, Hoffland E (2005) Tolerance to zinc deficiency in rice correlates with zinc uptake and translocation. Plant Soil 278:253–261

    Article  CAS  Google Scholar 

  • Gao XP, Zou CQ, Fan XY, Zhang FS, Hoffland E (2006) From flooded to aerobic conditions in rice cultivation: consequences for zinc uptake. Plant Soil 280:41–47

    Article  CAS  Google Scholar 

  • Gao XP, Kuyper TW, Zou C, Zhang F, Hoffland E (2007) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant Soil 290:283–291

    Article  CAS  Google Scholar 

  • Gao XP, Kuyper TW, Zhang F, Zou C, Hoffland E (2009b) How does aerobic rice take up zinc from low zinc soil? In: Banuelos GS, Lin Z-Q (eds) Mechanisms, trade-offs, and Implications for Breeding. Development and Uses of Biofortified Agricultural Products, pp 153–170

  • Gao XP, Zhang F, Hoffland E (2009b) Malate exudation by six aerobic rice genotypes varying in zinc uptake efficiency. J Environ Qual 38:1–7

    Article  CAS  Google Scholar 

  • Gao X, Akhter F, Tenuta M, Flaten DN, Gawalko EJ, Grant CA (2010a) Mycorrhizal colonization and grain Cd concentration of field-grown durum wheat in response to tillage, preceding crop and phosphorus fertilization. J Sci Food Agric 90:750–758

    PubMed  CAS  Google Scholar 

  • Gao X, Brown KR, Racz GJ, Grant CA (2010b) Concentration of cadmium in durum wheat as affected by time, source and placement of nitrogen fertilization under reduced and conventional tillage management. Plant Soil 337:341–354

    Article  CAS  Google Scholar 

  • Gao X, Hoffland E, Stomph TJ, Grant CA, Zou C, Zhang F (2012) Improving zinc bioavailability in transition from flooded to aerobic rice. A review. Agron Sustain Dev 32:465–478

    Article  CAS  Google Scholar 

  • Garcia-Oliveira AL, Tan LB, Fu YC, Sun CQ (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51:84–92

    Article  PubMed  CAS  Google Scholar 

  • Giordano PM (1977) Efficiency of zinc fertilization for flooded rice. Plant Soil 48:673–684

    Article  CAS  Google Scholar 

  • Giordano PM (1979) Soil temperature and nitrogen effects on response of flooded and nonflooded rice to zinc. Plant Soil 52:365–372

    Article  CAS  Google Scholar 

  • Giordano PM, Mortvedt JJ (1972) Rice response to Zn in flooded and non flooded soil. Agron J 64:521–524

    Article  CAS  Google Scholar 

  • Giordano PM, Mortvedt JJ (1973) Zinc sources and methods of application for rice. Agron J 65:51–53

    Article  CAS  Google Scholar 

  • Graham RD (1984) Breeding for nutritional characteristics in cereals. In: Thinker PB, Lauchli A (eds) Advances in plant nutrition. Vol.I. Praeger, New York, pp 57–102

    Google Scholar 

  • Graham RD, Rengel Z (1993) Genotypic variation in zinc uptake and utilization by plants. In: Robson AD (ed) Zinc in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 107–118

    Chapter  Google Scholar 

  • Graham RD, Ascher JS, Hynes SE (1992) Selecting Zn efficient cereal genotypes for soils and low zinc status. Plant Soil 146:241–250

    Article  CAS  Google Scholar 

  • Graham RD, Senadhira D, Beebe SE, Iglesias C, Oritz-Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops: Conventional approaches. Field Crop Res 60:57–80

    Article  Google Scholar 

  • Grant CA, Monreal MA, Irvine RB, Mohr RM, Mclaren DL (2010) Receding crop and phosphorus fertilization affect cadmium and zinc concentration of flaxseed under conventional and reduced tillage. Plant Soil 333:337–350

    Article  CAS  Google Scholar 

  • Gregorio GB (2002) Progress in breeding for trace minerals in staple crops. J Nutr 132:500–502

    Google Scholar 

  • Guimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ionnidis V, Oakeley E, Docquier M, Descombes P, Briggs S, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070

    Article  PubMed  CAS  Google Scholar 

  • Gupta VK, Gupta SP, Kala R, Potalia BS, Kaushik RD (1994) 25 years of micronutrient research in soils and crops of Haryana. Department of Soil Science. CCS, Haryana Agricultural University, Hissar, pp 1–99

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159:341–350

    Article  CAS  Google Scholar 

  • Hafeez B, Khanif YM, Samsuri AW, Radziah O, Zakaria W (2009) Zinc efficiency of rice genotypes grown in solution culture. 4th Conference on Recent Technologies in Agriculture, 2009. 3 to 5 November 2009, Cairo, Giza, Egypt

  • Hajiboland R, Salehi SY (2006) Characterization of Zn efficiency in Iranian rice Genotypes I. Uptake efficiency. Gen Appl Plant Physiol 32:191–206

    Google Scholar 

  • Hajiboland R, Yang ZE, Romheld V (2003) Effects of bicarbonate and high pH on growth of Zn efficient and Zn inefficient genotypes of rice, wheat and rye. Plant Soil 250:349–357

    Article  CAS  Google Scholar 

  • Hajiboland R, Yang XE, Romheld V, Nuemann G (2005) Effect of bicarbonate on elongation and distribution of organic acids in root and root zone of Zn efficient and Zn inefficient rice (Oryza sative L.) genotypes. Environ Exp Bot 54:163–173

    Article  CAS  Google Scholar 

  • Hajiboland R, Aliasgharzad N, Barzeghar NR (2009) Influence of arbascular mycorryizal fungi on uptake of Zn and P by two contrasting rice genotypes. Plant Soil Environ 55:93–100

    CAS  Google Scholar 

  • Haldar M, Mandal LN (1979) Influence of soil moisture regimes and organic matter application on the extractable Zn and Cu content in rice soils. Plant Soil 53:203–213

    Article  CAS  Google Scholar 

  • Hatch MD, Slack CR (1970) Photosynthetic CO2 fixation pathways. Annu Rev Plant Physiol 21:141–162

    Article  CAS  Google Scholar 

  • Hoffland E, Wei C, Wissuwa M (2006) Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant Soil 283:155–162

    Article  CAS  Google Scholar 

  • Hussain S, Maqsood MA, Rengel Z, Aziz T (2012) Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant Soil. doi:10.1007/s11104-012-1217-4

  • Impa SM, Schulin R, Ismail A, Beebout JS (2010) Unravelling the mechanisms influencing grain-zn content in rice genotypes. In: Abstracts, International Rice Congress, Hanoi Veitnam, Nov 8-12, 2010

  • Irshad M, Gill MA, Aziz T, Rahmatullah, Ahmad I (2004) Growth response of cotton cultivars to zinc deficiency stress in chelator-buffered nutrient solution. Pak J Bot 36:373–380

    Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T (2006) Rice plants take up iron as an Fe3+−phytosiderophore and as Fe2+. Plant J 45:335–346

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H (2007) Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot 58:2909–2915

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Bashir K, Nishizawa NK (2011) Zn uptake and translocation in rice plants. Rice 4:21–27

    Article  Google Scholar 

  • Ismail AM, Heuer S, Thomson JT, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Struik PC, Lingna J, van Keulen H, Ming Z, Stomph TJ (2007) Uptake and distribution of root applied or foliar applied Zn after flowering in aerobic rice. Ann Appl Biol 150:383–391

    Article  CAS  Google Scholar 

  • Jiang W, Struik PC, van Keulen H, Zhao M, Jin LN, Stomph TJ (2008a) Does increased zinc uptake enhance grain zinc mass concentration in rice? Ann Appl Biol 153:135–147

    Article  CAS  Google Scholar 

  • Jiang W, Struik PC, Zhao M, van Keulen H, Fan TQ, Stomph TJ (2008b) Indices to screen for grain yield and grain zinc mass concentration in aerobic rice at different soil Zn levels. NJAS Wageningen J Life Sci 55:181–197

    Article  Google Scholar 

  • Johnson SE, Lauren JG, Welch RM, Duxbury JM (2005) A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal. Exp Agric 41:427–448

    Article  CAS  Google Scholar 

  • Johnson-Beebout SE, Angeles OR, Alberto MCR, Buresh RJ (2009) Simultaneous minimization of nitrous oxide and methane emission from rice paddy soils is improbable due to redox potential changes with depth in a greenhouse experiment without plants. Geoderma 149:45–53

    Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257

    Article  CAS  Google Scholar 

  • Kang BT, Okoro EG (1976) Response of flooded rice grown on a vertisol from northern Nigeria to zinc sources and methods of application. Plant Soil 44:15–25

    Article  CAS  Google Scholar 

  • Karak T, Das D (2006) Effect of foliar application of different sources of zn application on the changes in zn content, uptake and yield of rice (Oryza sativa L). 18th World Congress of Soil Science, July 9-15, 2006-Philadelphia, Pennsylvania, USA

  • Katyal JC, Ponnamperuma FN (1974) Zinc deficiency: a widespread nutritional disorder of rice in Agusan del Norte, Philippines. Agric J 58:79–89

    Google Scholar 

  • Khan MU, Qasim M, Jamil M (2002) Response of rice to zinc fertilizer in calcareous soils of D.I. Khan. Asian J Plant Sci 1:1–2

    Article  Google Scholar 

  • Khan MU, Qasim M, Subhan M, Jamil M, Ahmad RD (2003) Response of rice to different methods of Zn application in calcaerous soils. Pak J Appl Sci 3:524–529

    Google Scholar 

  • Khanda CM, Dixit L (1996) Effect of zinc and nitrogen fertilization on yield and nutrient uptake of summer rice. Indian J Agron 41:368–372

    CAS  Google Scholar 

  • Kirk GJD, Bajita JB (1995) Root-induced iron oxidation, pH changes and zinc solubilisation in the rhizosphere of lowland rice. New Phytol 131:129–137

    Article  CAS  Google Scholar 

  • Kittrick JA (1976) Control of Zn2+ in soil solution by sphalerite. Soil Sci Soc Am J 40:314–317

    Article  CAS  Google Scholar 

  • Kumar A, Yadav DS (1995) Use of organic manure and fertilizers in rice ± wheat cropping systems for sustainability. Indian J Agric Sci 65:703–707

    Google Scholar 

  • Lal R (2009) Laws of sustainable soil management. Agron Sustain Dev 29:7–10

    Article  Google Scholar 

  • Lal B, Majumdar B, Venkatesh MS (2000) Individual and interactive effects of phosphorus and zinc in lowland rice. Indian J Hill Farming 13:44–46

    Google Scholar 

  • Lee S, Jeong HJ, Kim SA, Lee J, Guerinot ML, An G (2010a) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim SA, Lee J, Guerinot ML, An G (2010b) Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cells 29:551–558

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Barker R (2004) Increasing water productivity for paddy irrigation in China. Paddy Water Environ 2:187–193

    Article  Google Scholar 

  • Lindsay WL (1972) Inorganic phase equilibria of micronutrients in soils. In: Mortvedt JJ, Giordano PM, Lindsay WL (eds) Micronutrients in Agriculture, pp 41–57

  • Liu Z (1996) Microelements in soils of China. Jiangsu Science and Technology Publishing House, Nanjing, p 188

    Google Scholar 

  • Lockard RG, Ballaux JC, Liongson EA (1972) Response of rice grown in three potted Luzon soils to additions of boron, sulfur, and zinc. Agron J 64:444–447

    Article  CAS  Google Scholar 

  • Maclean JL, Dawe DC, Hardy B, Hettel CP (2002) Rice almanac, 3rd edn. CABI Publishing, Wallingford, p 2533

    Google Scholar 

  • Mandal B, Mandal LN (1999) Effect of phosphorus application on transformation of zinc fraction in soil and on the zinc nutrition of lowland rice. Plant Soil 121:115–123

    Article  Google Scholar 

  • Mandal B, Chatterjee J, Hazra GC, Mandal LN (1992) Effect of preflooding on transformation of applied zinc and its uptake by rice in lateritic soils. Soil Sci 153:250–257

    Article  CAS  Google Scholar 

  • Mandal B, Hazra GC, Mandal LN (2000) Soil management influences on zinc desorption for rice and maize nutrition. Soil Sci Soc Am J 64:1699–1705

    Article  CAS  Google Scholar 

  • Mao Zhi (1993) Study on evaluation of irrigation performance in China. In: Maintenance and operation of irrigation/drainage scheme and improved performance. Proceedings of Asian Regional Symposium, Beijing 24–27, pp 6–35

  • Mao Z, Yuanhua L, Tuong TP, Molden D, Bin D (2000) Water-saving irrigation practices for rice in China. Paper presented at the International Rice Research Conference, IRRI, Los Banos, Philippines, April 2000

  • Maqsood MA, Hussain S, Aziz T, Ashraf M (2011) Wheat exuded organic acids influence zinc release from calcareous soils. Pedosphere 21(5):657–665

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, San Diego, p 889

    Google Scholar 

  • Marschner H, Romheld V (1998) Role of root growth, arbuscular mycorrhiza and root exudates for the efficiency in nutrient acquisition. Field Crops Res 56:203–207

    Article  Google Scholar 

  • Masuda H, Suzuki M, Morikawa KC, Kobayashi T, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK (2008) Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1:100–108

    Article  Google Scholar 

  • Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Mori S, Nishizawa NK (2009) Overexpression of the barley nicotianamine synthase gene hvnas1 increases iron and zinc concentrations in rice grains. Rice 2:155–166

    Article  Google Scholar 

  • Matsuo N, Mochizuki T (2009) Genotypic differences in root traits of rice (Oryza sativa L.) seedlings grown under different soil environments. Plant Root 3:17–25

    Google Scholar 

  • Mengel K, Kirkby E (2001) Principles of plant nutrition. Kluwer Academics Publishers, Dordrecht

    Book  Google Scholar 

  • Mengel DB, Wilson FE (1979) Correction of Zn deficiency in direct seeded rice. Int Rice Res Newsl 4:24–25

    Google Scholar 

  • Mikkelsen DS, Kuo S (1976) Zinc fertilization and behavior in flooded soils. In: The fertility of paddy soils and fertilizer application of rice. Food and Fertilizer Technology Centre, Taipei, Taiwan, pp 170–196

  • Morete MJ, Impa SM, Rubianes F, Beebout SEJ (2011) Characterization of zinc uptake and transport in rice under reduced conditions in agar nutrient solution., 2011. 14th Philippine Society of Soil Science and Technology, Scientific Conference, 25–27 May, VSU, Baybay, Leyte, Philippines

  • Naik SK, Das DK (2007) Effect of split application of zinc on yield of rice (Oryza sativa L.) in an inceptisol. Arch Agron. Soil Sci 53(3):305–313

    CAS  Google Scholar 

  • Nattinee P, Cakmak I, Panomwan B, Jumniun W, Benjavan R (2009) Role of Zn fertilizers in increasing grain zinc concentration and improving grain yield of rice. The Proceedings of the International Plant Nutrition Colloquium XVI, Department of Plant

  • Nayyar VK, Takkar PN (1980) Evaluation of various zinc sources for rice grown on alkali soil. J Plant Nutr Soil Sci 143:489–493

    Article  CAS  Google Scholar 

  • Nayyar VK, Arora CL, Kataki PK (2001) Management of soil micronutrients deficiencies in the rice-wheat cropping system. J Crop Prod 4:87–131

    Article  CAS  Google Scholar 

  • Nene YL (1966) Symptoms, cause and control of Khaira disease of paddy. Bull Indian Phytopathol Soc 3:97–191

    Google Scholar 

  • Neue HU, Lantin RS (1994) Micronutrient toxicities and deficiencies in rice. In: Yeo AR, Flowers TJ (eds) Soil mineral stresses: approaches to crop improvement. Springer, Berlin, pp 175–200

    Google Scholar 

  • Neue HU, Quijano C, Senadhia D, Sette T (1998) Strategies of dealing with micronutrient disorders and salinity in low land rice systems. Field Crops Res 56:139–155

    Article  Google Scholar 

  • Norton GJ, Deacon CM, Xiong LZ, Huang SY, Meharg AA, Price AH (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139–153

    Article  CAS  Google Scholar 

  • Olsen SR (1972) Micronutrient interaction. In: Micronutrients in agriculture. Soil Sci. Society of America. Inc. Madison, Wisconsin, pp 243–264

  • Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    Google Scholar 

  • Parsad B, Sharma MM, Sinha SK (2002) Evaluating Zn fertilizer requirements on typic haplaquent in the rice-wheat cropping system. J Sustain Agric 19:39–49

    Article  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    Article  PubMed  CAS  Google Scholar 

  • Phattarakul N, Mongon J, Rerkasem B (2011) Variation in rice grain zinc and their response to zinc fertilizer. 3rd International Zinc Symposium 10-14 October 2011, Hyderabad, India

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96

    Article  CAS  Google Scholar 

  • Prasad R (2011) Aerobic rice systems. Adv Agron 111:207–247

    Article  CAS  Google Scholar 

  • Qadar A (2002) Selecting rice genotypes tolerant to zinc deficiency and sodicity stresses. I. Differences in zinc, iron, manganese, copper, phosphorus concentrations and phosphorus/zinc ratio in their leaves. J Plant Nutr 25:457–473

    Article  CAS  Google Scholar 

  • Quijano-Guerta C, Kirk GJD, Portugal AM, Bartolome VI, McLaren GC (2002) Tolerance of rice germplasm to zinc deficiency. Field Crops Res 76:123–130

    Article  Google Scholar 

  • Ramesh SA, Shin R, Eide D, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134

    Article  PubMed  CAS  Google Scholar 

  • Rashid A, Yasin M, Ashraf M (1999) Zinc enrichment of the mat-type rice nursery. IRRN 27:32–33

    Google Scholar 

  • Rathore GS, Dubey SB, Khamparia RS, Sharma BL (1995) Annual progress report of all India Co-ordinated scheme of micronutrient and secondary nutrients and pollutants in soils and plants. Department of Soil Science, JNKVV, Jabalpur, Madhya Pardesh

    Google Scholar 

  • Reed ST, Martens DC (1996) Copper and zinc. In: Sparks DL (eds) Methods of soil analysis. Part 3-Chemical methods: Madison, Wisconsin, Soil Sci. Soc. of America, Inc

  • Rehman H (2012) N-Zn dynamics under different rice production systems. PhD Dissertation, University of Agriculture, Faisalabd-Pakistan

  • Rehman H, Basra SMA, Farooq M (2011) Field appraisal of seed priming to improve the growth, yield and quality of direct seeded rice. Turk J Agric For 35:357–365

    Google Scholar 

  • Rehman H, Farooq M, Basra SMA (2012) High grain Zn content results from increased Zn supply and remobilization during grain filling in water saving rice cultivation. In: Abstracts of 14th Congress of Soil Science, 12-15 March, 2012, Lahore, Pakistan

  • Rengel Z (1995a) Carbonic anhydrase activity in leaves of wheat genotypes differing in Zn efficiency. J Plant Physiol 147:251–256

    Article  CAS  Google Scholar 

  • Rengel Z (1995b) Sulfhydryl groups in root-cell plasma membranes of wheat genotypes differing in Zn efficiency. Physiol Plant 95:604–612

    Article  CAS  Google Scholar 

  • Rengel Z, Batten G, Crowley D (1999) Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Res 60:28–40

    Article  Google Scholar 

  • Renkou X, Zhao A, Li Q, Kong X, Ji G (2003) Acidity regime of the Red Soils in a subtropical region of southern China under field conditions. Geoderma 115:75–84

    Article  CAS  Google Scholar 

  • Sadeghzadeh B, Rengel Z (2011) Zinc in soils and crop nutrition. In: Hawkesford MJ, Barraclough P (eds) The molecular basis of nutrient use efficiency in crops. Wiley, London, pp 335–376

    Chapter  Google Scholar 

  • Sajwan KS (1985) Zinc nutrition and redox relationships of submerged paddy rice. Dissertation Abstracts International B (Sciences and Engineering) 46:1754B

    Google Scholar 

  • Sajwan KS, Lindsay WL (1986) Effects of redox redox (rē`dŏks): see oxidation and reduction and zinc deficiency in paddy rice. Soil Sci Soc Am J 50:1264–1269

    Article  CAS  Google Scholar 

  • Sasaki H, Hirose T, Watanabe Y, Ohsugi R (1998) Carbonic anhydrase activity and CO2-transfer resistance in Zn-deficient rice leaves. Plant Physiol 118:929–934

    Article  PubMed  CAS  Google Scholar 

  • Savithri P, Perumal R, Nagarajan R (1998) Soil and crop management technologies for enhancing rice production under micronutrient constraints. Nutr Cycl Agroecosyst 53:83–92

    Article  Google Scholar 

  • Sedberry JE, Peterson FJ Jr, Wilson E, Nugent AL, Engler RM, Brupbacher RH (1971) Effects of zinc and other elements on the yield of rice and nutrient content of rice plants. Louisiana State Univ. Agric. Exp. Stn. Bull. 653

  • Sharma PK, Lav B, Ladha JK, Naresh KK, Gupta RK, Balsubrananian BV, Bouman BAM (2002) Crop water relation in rice-wheat cropping under different tillage systems and water management practices in a marginally sodic, medium textured soil. In: Bouman BAM, Tuong TP, Ladha JK (eds) Water-wise production. International Rice Research Institute, Los Baños, Philippines

  • Shi J, Li L, Pan G (2009) Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low Cd paddy soil. J Environ Sci 21(2):168–172

    Article  CAS  Google Scholar 

  • Shivay YS, Kumar D, Prasad R, Ahlawat LPS (2008) Relative yield and zinc uptake by rice from zinc sulphate and zinc oxide coatings onto urea. Nutr Cycl Agroecosyst 80:181–188

    Article  CAS  Google Scholar 

  • Shuman LM (1991) Chemical forms of micronutrients in soils. In: Mortvedt JJ et al (eds) Micronutrients in agriculture, ASA, CSSA, and SSSA. Madison, WI, pp 113–144

  • Shuman LM, McCracken DV (1999) Tillage, lime, and poultry litter effects on soil zinc, manganese, and copper. Commun Soil Sci Plant Anal 30:1267–1277

    Article  CAS  Google Scholar 

  • Singh MV (2003) Micronutrient seed treatment to nourish the crops at the critical stages of growth. Tech. Bull. IISS, Bhopal, pp 1–93

  • Singh MV (2007) Efficiency of seed treatment for ameliorating zinc deficiency in crops. Proceedings of Zinc Crops Conference, Istanbul, Turkey

  • Singh SP, Westermann DT (2002) A single dominant gene controlling resistance to soil zinc deficiency in common bean. Crop Sci 42:1071–1074

    Article  Google Scholar 

  • Singh AP, Sakal R, Singh BP (1983) Relative effectiveness of various types and methods of zinc application on rice and maize crops grown in calcareous soil. Plant Soil 73:315–322

    Article  Google Scholar 

  • Singh B, Natesan SKA, Singh BK, Usha K (2003) Improving zinc efficiency of cereals under zinc deficiency. Curr Sci 88:36–44

    Google Scholar 

  • Skoog F (1940) Relationships between zinc and auxin in the growth of higher plants. Am J Bot 27:937–951

    Article  Google Scholar 

  • Slaton NA, Wilson CE Jr, Ntamatungiro S, Norman RJ, Boothe DL (2001) Evaluation of zinc seed treatments for rice. Agron J 93:152–157

    Article  CAS  Google Scholar 

  • Slaton NA, Gbur EE Jr, Wilson CE Jr, Norman RJ (2005a) Rice response to granular zinc sources varying in water soluble zinc. Soil Sci Soc Am J 69:443–452

    Article  CAS  Google Scholar 

  • Slaton NA, Normon RJ, Wilson CE Jr (2005b) Effect of Zn source and application time on Zn uptake and grain yield of flood irrigated rice. Agron J 92:272–278

    Article  Google Scholar 

  • Sommer AL, Lipman CB (1926) Evidence on the indispensable nature of zinc and boron for higher green plants. Plant Physiol 1:231–249

    Article  PubMed  CAS  Google Scholar 

  • Soon YK (1994) Changes in forms of zinc after 23 years of cropping following clearing of a boreal forest. Can J Soil Sci 74:179–184

    Article  CAS  Google Scholar 

  • Srinivasara CH, Wani SP, Sahrawat KL, Rego TJ, Pardhasaradhi G (2008) Zinc, boron and sulphur deficiencies are holding back the potential of rain fed crops in semi-arid India: Experiments from participatory watershed management. Int J Plant Product 2(1):89–99

    Google Scholar 

  • Srivastava PC, Gupta UC (1996) Trace elements in crop production. Science Publishers, Lebanon

    Google Scholar 

  • Srivastava PC, Ghosh D, Sing VP (1999) Evaluation of different zinc sources for lowland rice production. Biol Fert Soil 30:168–172

    Article  CAS  Google Scholar 

  • Srivastava PC, Singh AP, Kumar S, Ramachandran V, Shrivastava M, D’souza SF (2008) Desorption and transformation of zinc in a mollisol and its uptake by plants in a rice-wheat rotation fertilized with either zinc-enriched biosludge from molasses or with inorganic zinc. Biol Fert Soil 44:1035–1041

    Article  Google Scholar 

  • Stangoulis JCR, Huynh BL, Welch RM, Choi EY, Graham RD (2007) Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154:289–294

    Article  Google Scholar 

  • Stomph TJ, Jiang W, Struik PC (2009) Zinc biofortiivcation of cereals: rice differs from wheat and barely. Trends Plant Sci 14:123–124

    Article  CAS  Google Scholar 

  • Stomph TJ, Hoebe N, Spaans E, van der Putten PEL (2011) The relative contribution of post-flowering uptake of zinc to rice grain zinc density. 3rd International Zinc Symposium 10-14 October 2011, Hyderabad, India

  • Storey JB (2007) Zinc. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Press, Taylor & Francis Group, Boca Raton, pp 411–436

    Google Scholar 

  • Subedi M, Kreye C, Becker M (2010) Effects of moisture regimes and soil pH on micronutrient uptake of aerobic rice. Nepal J Agric Sci 8:16–25

    Google Scholar 

  • Suzuki M, Tsukamoto T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617

    Article  PubMed  CAS  Google Scholar 

  • Takagi S (1976) Naturally occurring iron-chelating compounds in oat and rice-root washings. I. Activity measurement and preliminary characterization. Soil Sci Plant Nutr 22:423–433

    Article  CAS  Google Scholar 

  • Takkar PN, Sidhu BS (1977) Kinetics of Zn transformations in submerged alkaline soils in the rice growing tracts of Punjab. J Agric Res (Camb) 93:441–451

    Article  Google Scholar 

  • Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root associated bacteria for Zn mobilization in rice. Pak J Bot 39:245–253

    Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signaling, transport and control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  PubMed  CAS  Google Scholar 

  • Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    Article  PubMed  CAS  Google Scholar 

  • Verma TS, Tripathi BR (1983) Zinc and iron interaction in submerged paddy. Plant Soil 72:107–116

    Article  CAS  Google Scholar 

  • Von Grebmer K, Fritschel H, Nestorova, B, Olofinbiyi T, Pandya-Lorch R, Yohannes Y (2008) Global Hunger Index. The Challenge of Hunger 2008. Bonn, Washington D.C., Dublin, October 2008

  • Wang RM, Yang XE (2001) Effect of different Zn activities on nutrient absorption of rice (Oryza sativa L.) and their genotypes differences in Zn nutrient. Acta Agron Sin 27:566–574

    Google Scholar 

  • Weiss DJ, Mason TFD, Zhao FJ, Kirk GJD, Coles BJ, Horstwood MSA (2004) Isotopic discrimination of zinc in higher plants. New Phytol 165:703–710

    Article  CAS  Google Scholar 

  • Welch R (1993) Zinc concentration and forms in plants for humans and animals. In: Robson AD (ed) Zinc in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 183–195

    Chapter  Google Scholar 

  • Welch RM (2002) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J Nutr 132:495–499

    Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs. Productive, sustainable, nutritious. Field Crops Res 60:1–10

    Google Scholar 

  • Welch RM, Webb MJ, Loneragan JF (1982) Zinc in membrane function and its role in phosphorus toxicity (Crops). In: Scaife A (ed) Plant nutrition. Proceedings of the 9th International Plant Nutrition Colloquium, Warwick University, England, August 1982, pp 710–715

  • Westfall DG, Anderson WB, Hodgens RJ (1971) Iron and zinc response of chlorotic rice growing on calcareous soil. Agron J 63:702–705

    Article  CAS  Google Scholar 

  • Wilhelm NS, Graham RD, Rovira AD (1988) Application of different sources of manganese sulphate decreases take-all of wheat grown in manganese deficient soil. Austr J Agric Res 39:1–10

    Article  CAS  Google Scholar 

  • Willson RL (1988) Zinc and iron in free radical pathology and cellular control. In: Mills CF (ed) Zinc in hutman biology. Springer, London, pp 147–172

    Google Scholar 

  • Wissuwa M, Ismail AM, Yanagihara S (2006) Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiol 142:731–741

    Article  PubMed  CAS  Google Scholar 

  • Wissuwa M, Ismail AM, Graham RD (2008) Rice grain zinc concentrations as affected by genotype, native soil zinc availability, and zinc fertilization. Plant Soil 306:37–48

    Article  CAS  Google Scholar 

  • Wu YF, Huang JW, Sinclair BR, Powers L (1992) The structure of the zinc sites of Escherichia coli DNA dependent RNA polymerase. J Biol Chem 267:25560–25567

    PubMed  CAS  Google Scholar 

  • Wu C, Lu LL, Yang X-E, Feng YY, Wei Y-Y, Hao H-LL, Stoffella PJ, He Z-L (2010) Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different zn densities. J Agric Food Chem 58:6767–6773

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Romheld V, Marschner H (1993) Effect of bicarbonate and root zone temperature on the uptake of Zn, Fe, Mn and Cu by different rice cultivars (Oryza sativa L.) grown in calcareous soil. Plant Soil 155–56:441–445

    Article  Google Scholar 

  • Yang X, Romheld V, Marschner H (1994) Effect of bicarbonate on root growth and accumulation of organic acids in Zn inefficient and Zn efficient rice cultivars (Oryza sativa L.). Plant Soil 164:1–7

    Article  CAS  Google Scholar 

  • Yang X, Ye ZQ, Shi CH, Zhu ML, Graham RD (1998) Genotypic differences in concentrations of iron, manganese, copper, and zinc in polished rice grains. J Plant Nutr 21:1453–1462

    Article  CAS  Google Scholar 

  • Yang X, Bouman BAM, Wang H, Wang Z, Zhao J, Chen B (2005) Performance of temperate aerobic rice under different water regimes in North China. Agric Water Manag 74:107–122

    Article  Google Scholar 

  • Yang XE, Chen WR, Feng Y (2007) Improving human micronutrient nutrition through biofortification in the soil plant system: China as a case study. Environ Geochem Health 29(5):413–428

    Article  PubMed  CAS  Google Scholar 

  • Yaseen M, Hussain T, Hakeem A, Ahmad S (1999) Integrated nutrient use including Zn for rice. Pak J Biol Sci 2:614–616

    Article  Google Scholar 

  • Yilmaz A, Ekiz H, Torun B, Gultekin I, Karanlik S, Bagci SA, Cakmak I (1997) Effect of different zinc application methods on grain yield and zinc concentration in wheat grown on zinc deficient calcareous soils in Central Anatolia. J Plant Nutr 20:461–471

    Article  CAS  Google Scholar 

  • Yoshida S (1981) Fundamentals of rice crop science. International Rice Research Institute, Los Banõs

    Google Scholar 

  • Yoshida S, Tanaka A (1969) Zinc deficiency of the rice plant in calcareous soils. Soil Sci Plant Nutr 15:75–80

    Article  CAS  Google Scholar 

  • Yoshida S, McLean GW, Shafi M, Mueller KE (1970) Effects of different methods of zinc application on growth and yields of rice in a calcareous soil, West Pakistan. Soil Sci Plant Nutr 16:147–149

    Article  CAS  Google Scholar 

  • Zhang XH, Zhu YG, Chen BD, Lin AJ, Smith SE, Smith FA (2005) Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination in soil. J Plant Nutr 28:2065–2077

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors highly appreciate three unknown reviewers for their critical reading and suggestions for the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Aziz.

Additional information

Responsible Editor: Ismail Cakmak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehman, Hu., Aziz, T., Farooq, M. et al. Zinc nutrition in rice production systems: a review. Plant Soil 361, 203–226 (2012). https://doi.org/10.1007/s11104-012-1346-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1346-9

Keywords

Navigation