Skip to main content

Advertisement

Log in

Improving human micronutrient nutrition through biofortification in the soil–plant system: China as a case study

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Micronutrient malnutrition is a major health problem in China. According to a national nutritional survey, approximately 24% of all Chinese children suffer from a serious deficiency of iron (Fe) (anemia), while over 50% show a sub-clinical level of zinc (Zn) deficiency. More than 374 million people in China suffer from goiter disease, which is related to iodine (I) deficiency, and approximately 20% of the Chinese population are affected by selenium (Se) deficiency. Micronutrient malnutrition in humans is derived from deficiencies of these elements in soils and foods. In China, approximately 40% of the total land area is deficient in Fe and Zn. Keshan and Kaschin-Beck diseases always appear in regions where the soil content of Se in low. The soil–plant system is instrumental to human nutrition and forms the basis of the “food chain” in which there is micronutrient cycling, resulting in an ecologically sound and sustainable flow of micronutrients. Soil-plant system strategies that have been adopted to improve human micronutrient nutrition mainly include: (1) exploiting micronutrient-dense crop genotypes by studying the physiology and genetics of micronutrient flow from soils to the edible parts of crops; (2) improving micronutrient bioavailability through a better knowledge of the mechanisms of the enhancers’ production and accumulation in edible parts and its regulation through soil-plant system; (3) improving our knowledge of the relationship between the content and bioavailability of micronutrients in soils and those in edible crop products for better human nutrition; (4) developing special micronutrient fertilizers and integrated nutrient management technologies for increasing both the density of the micronutrients in the edible parts of plants and their bioavailability to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Babik, I., Rumpel, J., Elkner, K., Dias, J. S., Lcrute, I., & Monteiro, A. A. (1996). The influence of nitrogen fertilization on yield, quality and senescence of Brussels sprouts. Acta Horticulturae, 407, 353–359.

    CAS  Google Scholar 

  • Bänziger, M., & Long, J. (2000). The potential for increasing the iron and zinc density of maize through plant-breeding. Food Nutrition Bulletin, 21, 397–400.

    Google Scholar 

  • Batten, G. D. (1994). Concentrations of elements in wheat grains grown in Australia, North America, and the United Kingdom. Australian Journal of Experimental Agriculture, 34, 51–56.

    Article  CAS  Google Scholar 

  • Bouis, H. (1996). Enrichment of food staples through plant breeding: A new strategy for fighting micronutrient malnutrition. Nutrition Reviews, 54, 131–137.

    Article  CAS  Google Scholar 

  • Cababallero, B. (2002) Impact of micronutrient deficiencies on growth: The stunting syndrome. Annuals of Nutrition and Metabolism, 46, 8–17.

    Article  Google Scholar 

  • Cakmak, I., Kalayci, M., Ekiz, H., Braun, H. J., Kilinc, Y., & Yilmaz, A. (1999). Zinc deficiency as a practical problem in plant and human. Field Crops Research, 60, 175–188.

    Article  Google Scholar 

  • Camara, F., Barbera, R., Amaro, M. A., & Farre, R. (2006). Calcium, iron, zinc and copper transport and uptake by Caco-2 cells in school meals: Influence of protein and mineral interactions. Food Chemistry, 100, 1085–1092.

    Article  CAS  Google Scholar 

  • Chavez, A. L., Bedoya, J. M., Iglesias, C., Ceballos, H., Roca, W. (1999). Exploring the genetic potential to improve micronutrient content in cassava, in Improving human nutrition through agriculture: The role of international agricultural research. A workshop hosted by the International Rice Research Institute.

  • Chavez, A. L., Bedoya, J. M., Iglesias, C., Ceballos, H., & Roca, W. (2000). Iron, carotene, and ascorbic acid in cassava roots and leaves. Food and Nutrition Bulletin, 21, 410–413.

    Google Scholar 

  • Chen, J. S. (2003). Effectiveness of NaFeEDTA fortified soysource on preventing Fe deficiency. Journal of Hygiene Research, 32, 29–38.

    CAS  Google Scholar 

  • Chen, S. M. (Ed.) (2000). Tracking human nutrition of China in the last 10 years. Beijing, China: Hygiene Acad. Press.

    Google Scholar 

  • Chen ,W. R., Feng, Y., Chao, Y. E., & Yang, X. E. (2007). Genomic analysis and expression pattern of OsZIP1, OsZIP3 and OsZIP4 in rice (Oryza sativa L.) of different varieties with varying zinc efficiency. Plant Soil (in press).

  • Dainty, J. R. (2001). Use of stable isotopes and mathematical modelling to investigate human mineral metabolism. Nutrition Research Reviews, 14, 295–315.

    Article  CAS  Google Scholar 

  • Eide, D., Broderius, M. F. J., & Guerinot, M. L. (1996). A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of National Academy of Sciences of the United States of America, 93, 5624–5628.

    Article  CAS  Google Scholar 

  • ETCAEDEC. (1989). The atlas of endemic disease and their environments in the People’s Republic of China. Beijing: Science Presss. ISBN 7-03-001200-3/P* 216.

  • Fairweather-Tait, S. J., & Dainty, J. (2002). Use of stable isotopes to assess the bioavailability of trace elements: A review. Food Additives and Contaminants, 19, 939–947.

    Article  CAS  Google Scholar 

  • Fawzi, A. F. A., EI-Fouly, M. M., & Moubarak, Z. M. (1993). The need of grain legumes for iron, manganese and zinc fertilization under Egyptian soil conditions: Effect and uptake of metalosates. Journal of Plant Nutrition, 16, 813–823.

    CAS  Google Scholar 

  • Garcia-Casal, M. N., Leets, I., & Layrisse, M. (2000). β-Carotene and inhibitors of iron absorption modify iron uptake by caco-2 cells. Journal of Nutrition, 130, 5–9.

    CAS  Google Scholar 

  • Gargari, B. P., Razavieh, S. V., Mahboob, S., Niknafs, B., & Kooshavar, H. (2006). Effect of retinol on iron bioavailability from Iranian bread in a Caco-2 cell culture model. Nutrition, 22, 638–644.

    Article  CAS  Google Scholar 

  • Ghandilyan, A., Vreugdenhil, D., & Aarts, M. G. M. (2006). Progress in the genetic understanding of plant iron and zinc nutrition. Physiologia Plantarum, 126, 407–417.

    Article  CAS  Google Scholar 

  • Glahn, R. P., Chen, S. Q., Welch, R. M., & Gregorio, G. B. (2002). comparison of iron bioavailability from 15 rice genotypes. Journal of Agricultural and Food Chemistry, 50, 3586–3591.

    Article  CAS  Google Scholar 

  • Graham, R. D., Senadhira, C., Beebe, S. E., Iglesias, C., & Monasterio, I. (1999). Breeding for micronutrient density in edible portions of staple food crops:conventional approaches. Field Crops Research, 60, 57–80.

    Article  Google Scholar 

  • Graham, R. D., Senadhira, C., Beebe, S. E., & Iglesias, C. (1998). A strategy for breeding staple-food crops with high micronutrient density. Soil Science and Plant Nutrition, 43, 1153–1157.

    Google Scholar 

  • Graham, R. D., Welch, R. M., & Bouis, H. E. (2001). Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Advances in Agronomy, 70, 77–142.

    Article  Google Scholar 

  • Gregorio, G., Senadhira, D., Htut, H., & Graham, R. D. (2000). Breeding for trace mineral density in rice. Food and Nutrition Bulletin, 21, 382–386.

    Google Scholar 

  • Grotz, N., & Guerinot, M. L. (2006). Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochemica et Biophysica Acta–Molecular Cell Research, 1763, 595–608.

    Article  CAS  Google Scholar 

  • Haas, J. D., Beard, J. L., Murray-Kolb, L. E., Mundo, A. M. del, Felix, A., & Gregorio, G. B. (2005). Iron-biofortified rice improves the iron stores of nonanemic Filipino women. Journal of Nutrition, 135, 2823–2830.

    CAS  Google Scholar 

  • Hao, H. L., Feng, Y., Huang, Y. Y., Tian, S. K., Lu, L. L., Yang, X. E., & Wei, Y. Z. (2005). Situ analysis of cellular distribution of iron and zinc in rice grain using SRXRF method. High Energy Physics and Nuclear Physics-Chinese Edition, 29, 55–60.

    Google Scholar 

  • Haslett, B. S., Reid, R. J., & Rengel, Z. (2001). Zinc mobility in wheat: uptake and distribution of zinc applied to leaves or roots. Annals of Botany, 87, 379–386.

    Article  CAS  Google Scholar 

  • Hou, J. S., Yang, X. G., & Chen, J. Sh. (2003). Determination of iron absorption efficiency of fortified NaFeEDTA by human using stable isotopic tracers. Journal of Hygiene Research, 32, 19–24.

    CAS  Google Scholar 

  • Hu, S. F., & Gao, H. (2006). Determination and analysis on whole blood zinc of 632 cases. Journal of Guangdong Micronutrient Science, 13, 34–36.

    Google Scholar 

  • Hu, Y. X., Qu, C. G., & Yu, J. N. (2003). Zn and Fe fertilizers’ effects on wheat’s output. Chinese Germplasm, 2, 25–28.

    Google Scholar 

  • Ishimaru, Y., Suzuki, M., Kobayashi, T., Takahashi, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2005). OsZIP4, a novel zinc-regulated zinc transporter in rice. Journal of Experimental Botany, 56, 3207–3214.

    Article  CAS  Google Scholar 

  • Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi1, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2006). Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant Journal, 45, 335–346.

    Article  CAS  Google Scholar 

  • Korshunova, Y. O., Eide, D., Clark, W. G., Guerinot, M. L., & Pakrasi, H. B. (1999). The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Molecular Biology, 40, 37–44.

    Article  CAS  Google Scholar 

  • Lao, B. Y. (1999). The element Zn and growth of children. Journal Guangdong Micronutrient Science, 6, 31–33.

    CAS  Google Scholar 

  • Li, J., Xia, J. G., Gong, F. Y., Li, T. X., Zhang, X. Z., & Yang, L. Y. (2005). Effect of selenium application on selenium content and chemical quality of tea. Journal of Soil and Water Conservation, 19, 104–107.

    CAS  Google Scholar 

  • Li, S. Y., Chen, M. J., & Wu, S. Y. (1995). Survey of zinc deficiency in children of Zhuhai city. Gangdong Trace Elements Science, 3, 30–32.

    Google Scholar 

  • Li, Z. G., Ye, Z. Q., Fang, Y. Y., & Yang, X. E. (2003a). Effects of Zn supply levels on growth and Zn accumulation and distribution. China Rice Science, 17, 61–66.

    Google Scholar 

  • Li, Z. Q., Ye, Z. Q., Yang, X. E., & Virmani, V. V. (2003b). Effect of nutrient management at the late growth stage on leaf physiology and grain filling of hybrid rice. Journal of Zhejiang University (Agricultural & Life Science), 29, 265–270.

    CAS  Google Scholar 

  • Liu, Z. (1991). The agricultural chemistry and micronutrients (pp. 93–232). Beijing: Agricultural Publisher of China.

    Google Scholar 

  • Liu, Z. (1993). Human Nutrition and Social Nutrition (pp. 421–425). Beijing: Light Industrial Publishers of China.

    Google Scholar 

  • Liu, Z. (1994). The soil zinc distribution in China. Chinese Agricultural Science, 27, 30–37.

    CAS  Google Scholar 

  • Lu, X. Q., Gao, X., & An, X. X. (2000). Exploring bioenrichment seleninum tea beverage. Science and Technology of Food Industry, 21, 29–31.

    CAS  Google Scholar 

  • Lucca, P., Hurrez, R., & Potryheis, I. (2001). Approaches to improving the bioavailability and level of iron in rice seeds. Journal of Science, Food and Agricultural, 81, 828–834.

    Article  CAS  Google Scholar 

  • Luo, Z. K., Li, Z. X., Liang, Y. C., & Sheng, S. Y. (1995). Determination of Mn, Cu, Zn, and Cr concentrations in hairs of 107 advanced aged persons. Gangdong Trace Elements Science, 2, 22–25.

    CAS  Google Scholar 

  • Ma, T., & Kou, Y. L. (2003). The analysis on the relationship between the content of Zn in hair of children and health. Journal of Guangdong Micronutrient Science, 10, 46–47.

    CAS  Google Scholar 

  • Miller, E. R., & Ullrey, D. E. (1987). The pig as a model for human nutrition. Annual Reviews of Nutrition, 7, 361–387.

    Article  CAS  Google Scholar 

  • Monasterio, I., & Graham, R. D. (2000). Breeding for trace minerals in wheat. Food Nutrition and Bulletin, 21, 392–396.

    Google Scholar 

  • Moreno, D. A., Villora, G., & Romero, L. (2003). Variations in fruit micronutrient contents associated with fertilization of cucumber with macronutrients. Scientia Horticulturae, 97, 121–127.

    Article  CAS  Google Scholar 

  • Mori, S. (1997). Reevaluation of the genes induced by iron deficient in barley roots. Plant Nutrition for Sustainable Food Production and Environment (pp. 249–254). The Netherlands: Kluwer Academic Publishers.

  • Mozafar, A. (1993). Nitrogen fertilizers and the amount of vitamins in plants: A review. Journal of Plant Nutrition, 16, 2479–2506.

    Google Scholar 

  • Mozafar, A. (1994). Plant Vitamins: Agronomic, Physiological, and Nutritional Aspects. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Norvell W, & Wu J. P. (2004). Geospatial distribution of major, trace and rare elements in agriculturally-suited soils of northern North Dakota. Stillwater: USDA-ARS Press.

  • Oikeh, S. O., Menkir, A., Maziya-Dixon, B., Welch, R. M., & Glahn, R. P. (2003). Assessment of concentrations of iron and zinc and bioavailable iron in grains of early-maturing tropical maize varieties. Journal of Agricultural and Food Chemistry, 51, 3688–3694.

    Article  CAS  Google Scholar 

  • Okumura, N., Nishizawa, N. K., & Umehara, Y. (1994). Adiaxygenase (Ids 2) expressed under iron deficiency condition in the roots of Hordeum vulgare. Plant Molecular Biology, 25, 705–719.

    Article  CAS  Google Scholar 

  • Pinto, A. P., Mota, A. M., & Varennes, A. D. (2004). Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Science of the Total Environment, 326, 239–247.

    Article  CAS  Google Scholar 

  • Poletti, S., Gruissen, W., & Sautter, C. (2004). The nutritional fortification of cereals. Current Opinion in Biotechnology, 15, 162–165.

    Article  CAS  Google Scholar 

  • Raboy, V. (2002). Progress in breeding low phytate crops. Journal of Nutrition, 132, 503–505.

    Google Scholar 

  • Rao, G. D., Wang, B. Y., & Cheng, T. Z. (2001). Analysis on the content of Pb, Zn, Cu, Fe, and Ca in hair of 826 Children. J Guangdong Micronutrient Science, 8, 28–32.

    CAS  Google Scholar 

  • Rengel, Z., Batten, G. D., & Crowley, D. E. (1999). Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Research, 60, 27–40.

    Article  Google Scholar 

  • Revy, R., Jondreville, C., Dourmad, J. Y., & Nys, Y. (2004). Effect of zinc supplemented as either an organic or an inorganic source and of microbial phytase on zinc and other minerals utilization by weanling pigs. Animal Feed Science and Technology, 116, 93–112.

    Article  CAS  Google Scholar 

  • Robinson, N. J., Procter, C. M., Conolly, E. L., & Guerinot, M. L. (1999). A ferri-chelate reductase for iron uptake from soil. Nature, 397, 694–697.

    Article  CAS  Google Scholar 

  • Robinson, N. J., Sadijuda, T., & Groom, Q. J. (1997). The froh gene family from Arabidopsis thaliana: Putative iron-chelate reductase. Plant Soil, 196, 245–248.

    Article  CAS  Google Scholar 

  • Romheld, V., & Schaaf, G. (2005). Iron transportation in plants: Future research in view of a plant nutritionist and a molecular biologist. Soil Science and Plant Nutrition, 50, 1003–1012.

    Google Scholar 

  • Schaffer, S., Pallauf, J., & Krawinke, M. B. (2004). Impact of feeding high-iron rice onplasma ron, hemoglobin and red blood cell Variables of early-weaned piglets. Annals of Nutrition and Metabolism, 48, 109–117.

    Article  CAS  Google Scholar 

  • Senadhira, D., & Graham, R. D. (1999). Genetic variation in iron and zinc concentrations in brown rice. Micronutrient and Agriculture, 3, 4–5.

    Google Scholar 

  • Shamsuddin, A. M. (1999). Metabolism and cellular functions of IP6: A review. Anticancer Research, 19, 3733–3736.

    CAS  Google Scholar 

  • Sharp, P. (2005). Methods and options for estimating iron and zinc bioavailability using Caco-2 cell models: Benefits and limitations. International Journal for Vitamin and Nutrition Research, 9, 322–330.

    Google Scholar 

  • Song, J. Y., Zhang, W. Y., Wang, Y. H., & Yin, J. (2005). Studies on technique in producing wheat of enriched selenium. Bulletin China Agronomy, 21, 197–199.

    Google Scholar 

  • Stahl, C. H., Han, Y. M., Roneker, K. R., House, W. A., & Lei, X. G. (1999). Phytase improves iron bioavailability for hemoglobin synthesis in young pigs. Journal of Animal Science, 77, 2135–2142.

    CAS  Google Scholar 

  • Tan, J. A. (Ed.) (2004). Geological environment and health. Beijing, China: Chemical Industry Press. ISBN 7-5025-5366-5/X·421.

  • Underwood, B. A., & Smitasiri, S. (1999). Micronutrient malnutrition: policies and programmes for control and their implications. Annual Review of Nutrition, 19, 303–324.

    Article  CAS  Google Scholar 

  • Vasconceios, M., Datta, K., Khalekuzzaman, M., Torrizo, L. Krishnan, S., Oliveira, M., Goto, F., & Datta, S. K. (2003). Enhanced iron and zinc accumulation with transgenic rice with the ferritin gene. Plant Science, 164, 371–378.

    Article  CAS  Google Scholar 

  • Wang, S. (1999). Analysis on 9 trace elements in 23 kinds of wheat and wheat flour from China and France. Guangdong Trace Elements Science, 6, 56–58.

    Google Scholar 

  • Welch, R. M. (1986). Effects of nutrient deficiencies on seed production and quality. Advances in Plant Nutr, 2, 205–247.

    CAS  Google Scholar 

  • Welch, R. M. (1995). Micronutrient nutrition of plants. Critical Reviews of Plant Science, 14, 49–82.

    Article  CAS  Google Scholar 

  • Welch, R. M. (2002). The impact of mineral nutrients in food crops on global human health. Plant Soil, 247, 83–90.

    Article  CAS  Google Scholar 

  • Welch, R. M., & Graham, R. D. (1999). A new paradigm for world agriculture: Meeting human needs-productive, sustainable, nutritious. Field Crops Research, 60, 1–10.

    Article  Google Scholar 

  • Welch, R. M., & Graham, R. D. (2002). Breeding crops for enhanced micronutrient content. Plant Soil, 245, 205–214.

    Article  CAS  Google Scholar 

  • Welch, R. M., & Graham, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 55, 353–364.

    Article  CAS  Google Scholar 

  • White, J. G., & Zasoski, R. J. (1999). Mapping soil micronutrients. Field Crops Research, 60, 11–26.

    Article  Google Scholar 

  • Wu , J. P., Shen, J., & Zhou, Z. D. (2001). Investigation of hair Fe level of school-age children in Nanchang county. Journal of Guangdong Micronutrient Science, 8, 53–55.

    Google Scholar 

  • Xiao, Y., Li, Y. T., & Cao, Y. P. (2000). Effects of Fe-fertilizer composition and application methods on the iron chlorosis correction of peanut. Soil and Fertilizer, 5, 21–28.

    Google Scholar 

  • Yang , X. E., Römheld, V. (1999). Physiological and genetic aspects of micronutrient uptake by higher plants. In Nielsen (Ed.), Genetics and molecular biology of plant nutrition (pp.151–186). Kluwer Acad. Publ.

  • Yang, X. E., Ye, Z. Q., Shi, C. H., & Graham, H. (1998). Genotypic differences in concentration of iron, manganese, copper, and zinc in rice grain. Journal of Plant Nutrition, 21, 1453–1463.

    Article  CAS  Google Scholar 

  • Yang, Y. C., & Guo, W. W. (1995). The analysis of hair Zn in 2283 children. Journal of Guangdong Micronutrient Science, 2, 53–55.

    Google Scholar 

  • Zhang, J., Wu, L. H., Kong, X. J., Li, Y. S., & Zhao, Y. D. (2006). Effect of foliar application of iron, zinc mixed fertilizers on the content of iron, zinc, soluble sugar and Vitamin C in green pea seeds. Plant Nutrition and Fertilizer Science, 12, 245–249.

    CAS  Google Scholar 

  • Zhang, P. Y., Song, H. B., & Xu, G. L. (1996). Effect of selenium supplement of the red cell immune fuction of patients with Kashin-beck disease. Journal of Xi’an Medical University, 17, 159–162.

    CAS  Google Scholar 

  • Zhu, Y. L., Zhao, G. R., & Yu, Z. X. (1997). The effect of Zn-fertilizer on rice yield. Anhui Agric Science Bulletin, 3, 36–37.

    Google Scholar 

Download references

Acknowledgements

The financial supports from the HarvestPlus Program (no. 2005HP03), Ministry of Science and Technology of China (no. 2006DA31030), and Education Ministry of China (no. IRT0536) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-E. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, XE., Chen, WR. & Feng, Y. Improving human micronutrient nutrition through biofortification in the soil–plant system: China as a case study. Environ Geochem Health 29, 413–428 (2007). https://doi.org/10.1007/s10653-007-9086-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-007-9086-0

Keywords

Navigation