Skip to main content
Log in

Effects of long-term action of high temperature and high light on the activity and energy interaction of both photosystems in tomato plants

  • Original papers
  • Published:
Photosynthetica

Abstract

The acclimation to high light, elevated temperature, and combination of both factors was evaluated in tomato (Solanum lycopersicum cv. M82) by determination of photochemical activities of PSI and PSII and by analyzing 77 K fluorescence of isolated thylakoid membranes. Developed plants were exposed for six days to different combinations of temperature and light intensity followed by five days of a recovery period. Photochemical activities of both photosystems showed different sensitivity towards the heat treatment in dependence on light intensity. Elevated temperature exhibited more negative impact on PSII activity, while PSI was slightly stimulated. Analysis of 77 K fluorescence emission and excitation spectra showed alterations in the energy distribution between both photosystems indicating alterations in light-harvesting complexes. Light intensity affected the antenna complexes of both photosystems stronger than temperature. Our results demonstrated that simultaneous action of high-light intensity and high temperature promoted the acclimation of tomato plants regarding the activity of both photosystems in thylakoid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

1,4 BQ:

1,4 benzoquinone

Car:

carotenoids

Chl:

chlorophyll

DCPIP:

2, 6-dichlorophenol-indophenol

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

Fm :

maximal fluorescence yield of the dark-adapted state

Fv :

variable fluorescence

HL:

high-light intensity

HT:

high temperature

MES:

2-(N-morpholino) ethanesulfonic acid

NT:

normal temperature

NL:

normal light intensity

R:

recovery

Tricine:

N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine

References

  • Allakhverdiev S.I., Kreslavski V.D., Klimov V.V. et al.: Heat stress: an overview of molecular responses in photosynthesis.–Photosynth. Res. 98: 541–550, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Anderson J.M., Horton P., Kim E.-H., Chow W.S.: Towards elucidation of dynamic structural changes of plant thylakoid architecture.–Philos. T. R. Soc. B 367: 3515–3524, 2012.

    Article  CAS  Google Scholar 

  • Aro E.-M., Virgin I., Andersson B.: Photoinhibition of Photosystem II. Inactivation, protein damage and turnover.–BBA-Bioenergetics 1143: 113–134, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview.–Photosynthetica 51: 163–190, 2013.

    Article  CAS  Google Scholar 

  • Ballotari M., Dall’Osto L., Morosinotto T., Bassi R.: Contrasting behaviour of higher plant photosystem I and IIantenna systems during acclimation.–J. Biol. Chem. 282: 8947–8958, 2007.

    Article  Google Scholar 

  • Buchner O., Stoll A., Karadar A. et al.: Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants.–Plant Cell Environ. 38: 812–826, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Bukhov N.G., Mohanty P.: Elevated temperature stress effects on photosystems: characterization and evaluation of the nature of heat induced impairments.–In: Singhal G.S., Renger G., Sopory S.K. et al. (ed.): Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Pp. 617–648. Narosa Publishing House, New Delhi 1999.

    Chapter  Google Scholar 

  • Bukhov N.G., Samson G, Carpentier R.: Nonphotosynthetic reduction of the intersystem electron transport chain of chloroplasts following heat stress. Steady-state rate.–Photochem. Photobiol. 72: 351–357, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Camejo D., Rodríguez P., Angeles Morales M. et al.: High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility.–J. Plant Physiol. 162: 281–289, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Dongsansuk A., Lütz C., Neuner G.: Effects of temperature and irradiance on quantum yield of PSII photochemistry and xanthophyll cycle in a tropical and a temperate species.–Photosynthetica 51: 13–21, 2013.

    Article  CAS  Google Scholar 

  • Havaux M.: Short-term responses of Photosystem I to heat stress. Induction of a PSII-independent electron transport through PSI fed by stromal components.–Photosynth. Res. 47: 85–97, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Havaux M., Greppin H., Strasser R.J.: Functioning of photosystem I and IIin pea leaves exposed to heat stress in the presence or absence of light.–Planta 186: 88–98, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Havaux M., Tardy F.: Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyll-cycle pigments.–Planta 198: 324–333, 1996.

    Article  CAS  Google Scholar 

  • Krause G.H., Winter K., Krause B., Virgo A.: Light-stimulated heat tolerance in leaves of two neotropical tree species, Ficus insipida and Calophyllum longifolium.–Funct. Plant Biol. 42: 42–51, 2015.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.–Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Marutani Y., Yamauchi Y., Miyoshi A. et al.: Regulation of photochemical energy transfer accompanied by structural changes in thylakoid membranes of heat-stressed wheat.–Int. J. Mol. Sci. 15: 23042–23058, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathur S., Agrawal D., Jajoo A.: Photosynthesis: response to high temperature stress.–J. Photoch. Photobio. B 137: 116–126, 2014.

    Article  CAS  Google Scholar 

  • Mohanty P., Vani B., Prakash J.S.: Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum.–Z. Naturforsch. 57: 836–842, 2002.

    CAS  Google Scholar 

  • Murata N., Allakhverdiev S.I., Nishiyama Y.: The mechanism of photoinhibition in vivo: Re-evaluation of the roles of catalase, a-tocopherol, non-photochemical quenching, and electron transport.–BBA-Bioenergetics 1817: 1127–1133, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I: Photoinhibition of photosystem II under environmental stress.–BBA-Bioenergetics 1767: 414–421, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Neta-Sharir I., Isaacson T., Lurie S., Weiss D.: Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation.–Plant Cell 17: 1829–1838, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama Y, Murata N.: Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery.–Appl. Microbiol. Biot. 98: 8777–8796, 2014.

    Article  CAS  Google Scholar 

  • Powles S.B.: Photoinhibition of photosynthesis induced by visible light.–Annu. Rev. Plant Biol. 35: 15–44, 1994.

    Article  Google Scholar 

  • Stapel D., Kruse E., Kloppstech K.: The protective effect of heat shock proteins against photoinhibition under heat shock in barley (Hordeum vulgare).–J. Photoch. Photobio. B 21: 211–218, 1993.

    Article  CAS  Google Scholar 

  • Tikkanen M., Aro E.-M.: Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants.–Biochim. Biophys. Acta 1817: 232–238, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Tikkanen M., Grieco M., Nurmi M. et al.: Regulation of the photosynthetic apparatus under fluctuating growth light.–Philos. T. R. Soc. B 367: 3486–3493, 2012.

    Article  CAS  Google Scholar 

  • Tikkanen M., Nurmi M., Suorsa M. et al.: Phosphorylationdependent regulation of excitation energy distribution between the two photosystems in higher plants.–Biochim. Biophys. Acta 1777: 425–432, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Velitchkova M., Popova A.: High light-induced changes of 77 K fluorescence emission of pea thylakoid membranes with altered membrane fluidity.–Bioelectrochemistry 67: 81–90, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Wahid A., Gelani S., Ashraf M., Foolad M.R.: Heat tolerance in plants: An overview.–Environ. Exp. Bot. 61: 199–223, 2007.

    Article  Google Scholar 

  • Weis E.: Light- and temperature-induced changes in the distribution of excitation energy between Photosystem I and Photosystem II in spinach leaves.–BBA-Bioenergetics 807: 118–126, 1985.

    Article  CAS  Google Scholar 

  • Wientjes E., van Amerongen H., Croce R.: LHCII is an antenna of both photosystems after long-term acclimation.–Biochim. Biophys. Acta. 1827: 420–426, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Yin Y., Li S., Liao W. et al.: Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves.–J. Plant Physiol. 167: 959–966, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J., Jiang X.D., Li T.L., Cao X.J.: Photosynthesis and ultrastructure of photosynthetic apparatus in tomato leaves under elevated temperature.–Photosynthetica 52: 430–436, 2014.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Velitchkova.

Additional information

Acknowledgements: This study is supported by Bulgarian–Swiss Research Program under project IZEBZO-143169/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faik, A., Popova, A.V. & Velitchkova, M. Effects of long-term action of high temperature and high light on the activity and energy interaction of both photosystems in tomato plants. Photosynthetica 54, 611–619 (2016). https://doi.org/10.1007/s11099-016-0644-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0644-5

Additional key words

Navigation