Skip to main content
Log in

Mathematical Modelling of Convection Enhanced Delivery of Carmustine and Paclitaxel for Brain Tumour Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Convection enhanced delivery (CED) is a promising method of anticancer treatment to bypass the blood–brain barrier. This paper is aimed to study drug transport under different CED operating conditions.

Methods

The convection enhanced delivery of chemotherapeutics to an intact and a remnant brain tumour after resection is investigated by means of mathematical modelling of the key physical and physiological processes of drug transport. Realistic models of brain tumour and its holding tissue are reconstructed from magnetic resonance images. Mathematical modelling is performed for the delivery of carmustine and paclitaxel with different infusion rates, solution concentrations and locations of infusion site.

Results

Modelling predications show that drug penetration can be improved by raising the infusion rate and the infusion solution concentration. The delivery of carmustine with CED is highly localised. High drug concentration only can be achieved around the infusion site. The transport of paclitaxel is more sensitive to CED-enhanced interstitial fluid as compared to carmustine, with deeper penetration into tumour interior. Infusing paclitaxel in the upstream of interstitial fluid flow leads to high spatial averaged concentration and relatively uniform distribution.

Conclusion

Results obtained in this study can be used to guide the design and optimisation of CED treatment regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain Barrier

CED:

Convection enhanced delivery

CM:

Cell Membrane

ECS:

Extracellular Space

ICS:

Intracellular Space

IFP:

Interstitial Fluid Pressure

IFV:

Interstitial Fluid Velocity

MRI:

Magnetic Resonance Image

REFERENCES

  1. Zhang P, Hu L, Yin Q, Feng L, Li Y. Transferrin-modified c[RGDfK]-paclitaxel loaded hybrid micelle for sequential blood–brain barrier penetration and glioma targeting therapy. Mol Pharm. 2012;9(6):1590–8.

    Article  CAS  PubMed  Google Scholar 

  2. Mangiola A, Anile C, Pompucci A, Capone G, Rigante L, De Bonis P. Glioblastoma therapy: going beyond Hercules Columns. Expert Rev Neurother. 2010;10(4):507–14.

    Article  PubMed  Google Scholar 

  3. Alam MI, Beg S, Samad A, Baboota S, Kohli K, Ali J, et al. Strategy for effective brain drug delivery. Eur J Pharm Sci. 2010;40(5):385–403.

    Article  CAS  PubMed  Google Scholar 

  4. Lonser RR, Sarntinoranont M, Morrison PF, Oldfield EH. Convection-enhanced delivery to the central nervous system. J Neurosurg. 2015;122(3):697–706.

    Article  PubMed  Google Scholar 

  5. Bruce JN, Falavigna A, Johnson JP, Hall JS, Birch BD, Yoon JT, et al. Intracerebral clysis in a rat glioma model. Neurosurgery. 2000;46(3):683–91.

    Article  CAS  PubMed  Google Scholar 

  6. Hamstra DA, Moffat BA, Hall DE, Young JM, Desmond TJ, Carter J, et al. Intratumoral injection of BCNU in ethanol (DTI-015) results in enhanced delivery to tumor–a pharmacokinetic study. J Neuro-Oncol. 2005;73(3):225–38.

    Article  CAS  Google Scholar 

  7. Lidar Z, Mardor Y, Jonas T, Pfeffer R, Faibel M, Nass D, et al. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg. 2004;100(3):472–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hassenbusch SJ, Nardone EM, Levin VA, Leeds N, Pietronigro D. Stereotactic injection of DTI-015 into recurrent malignant gliomas: phase I/II trial. Neoplasia. 2003;5(1):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Groh CM, Hubbard ME, Jones PF, Loadman PM, Periasamy N, Sleeman BD, et al. Mathematical and computational models of drug transport in tumours. J R Soc Interface. 2014;11(94):20131173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ulmschneider MB, Searson PC. Mathematical models of the steps involved in the systemic delivery of a chemotherapeutic to a solid tumor: From circulation to survival. J Control Release. 2015;212:78–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res. 1989;37(1):77–104.

    Article  CAS  PubMed  Google Scholar 

  12. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvasc Res. 1990;40(2):246–63.

    Article  CAS  PubMed  Google Scholar 

  13. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. III. Role of binding and metabolism. Microvasc Res. 1991;41(1):5–23.

    Article  CAS  PubMed  Google Scholar 

  14. Raghavan R, Brady ML, Croteau D, Friedman AH, Reardon DA, Coleman RE, et al. Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions. Neuro-Oncology. 2007;9(3):343–53.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Raghavan R, Brady M. Predictive models for pressure-driven fluid infusions into brain parenchyma. Phys Med Biol. 2011;56(19):6179.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Raghavan R, Brady ML, Sampson JH. Delivering therapy to target: improving the odds for successful drug development. Ther Deliv. 2016;7(7):457–81.

    Article  CAS  PubMed  Google Scholar 

  17. Støverud KH, Darcis M, Helmig R, Hassanizadeh SM. Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. Transp Porous Media. 2012;92(1):119–43.

    Article  Google Scholar 

  18. Linninger AA, Somayaji MR, Mekarski M, Zhang L. Prediction of convection-enhanced drug delivery to the human brain. J Theor Biol. 2008;250(1):125–38.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang L, Yang M, Jiang M. Mathematical modeling for convection-enhanced drug delivery. Procedia Eng. 2012;29:268–74.

    Article  CAS  Google Scholar 

  20. Arifin DY, Lee KYT, Wang C-H, Smith KA. Role of convective flow in carmustine delivery to a brain tumor. Pharm Res. 2009;26(10):2289–302.

    Article  CAS  PubMed  Google Scholar 

  21. Haar PJ, Broaddus WC, Z-j C, Fatouros PP, Gillies GT, Corwin FD. Quantification of convection-enhanced delivery to the ischemic brain. Physiol Meas. 2010;31(9):1075.

    Article  PubMed  Google Scholar 

  22. Zhan W, Gedroyc W, Yun XX. Mathematical modelling of drug transport and uptake in a realistic model of solid tumour. Protein Pept Lett. 2014;21(11):1146–56.

    Article  CAS  PubMed  Google Scholar 

  23. Weller RO, Djuanda E, Yow H-Y, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009;117(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  24. Fleming AB, Saltzman WM. Pharmacokinetics of the carmustine implant. Clin Pharmacokinet. 2002;41(6):403–19.

    Article  CAS  PubMed  Google Scholar 

  25. Golan DE, Tashjian AH, Armstrong EJ. Principles of pharmacology: the pathophysiologic basis of drug therapy: Lippincott Williams & Wilkins; 2011.

  26. Fung LK, Ewend MG, Sills A, Sipos EP, Thompson R, Watts M, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res. 1998;58(4):672–84.

    CAS  PubMed  Google Scholar 

  27. Eikenberry S. A tumor cord model for doxorubicin delivery and dose optimization in solid tumors. Theor Biol Med Model. 2009;6:16.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fung LK, Shin M, Tyler B, Brem H, Saltzman WM. Chemotherapeutic drugs released from polymers: distribution of 1, 3-bis (2-chloroethyl)-l-nitrosourea in the rat brain. Pharm Res. 1996;13(5):671–82.

    Article  CAS  PubMed  Google Scholar 

  29. Kalyanasundaram S, Calhoun V, Leong K. A finite element model for predicting the distribution of drugs delivered intracranially to the brain. Am J Phys Regul Integr Comp Phys. 1997;273(5):R1810–R21.

    CAS  Google Scholar 

  30. Seader J, Siirola JJ, Barnicki SD. Perry’s chemical engineer’s handbook. Perry's Chemical Engineers’ Handbook. 1997.

  31. Kimelberg H. Water homeostasis in the brain: basic concepts. Neuroscience. 2004;129(4):851–60.

    Article  CAS  PubMed  Google Scholar 

  32. Arifin DY, Lee KYT, Wang C-H. Chemotherapeutic drug transport to brain tumor. J Control Release. 2009;137(3):203–10.

    Article  CAS  PubMed  Google Scholar 

  33. Kuh H-J, Jang SH, Wientjes MG, Au JL-S. Computational model of intracellular pharmacokinetics of paclitaxel. J Pharmacol Exp Ther. 2000;293(3):761–70.

    CAS  PubMed  Google Scholar 

  34. Domb AJ, Israel ZH, Elmalak O, Teomim D, Bentolila A. Preparation and characterization of carmustine loaded polyanhydride wafers for treating brain tumors. Pharm Res. 1999;16(5):762–5.

    Article  CAS  PubMed  Google Scholar 

  35. Tiwari SB, Amiji MM. Improved oral delivery of paclitaxel following administration in nanoemulsion formulations. J Nanosci Nanotechnol. 2006;6(9–10):3215–21.

    Article  CAS  PubMed  Google Scholar 

  36. Goodman LS, Gilman A, Brunton LL, Lazo JS, Parker KL. Goodman & Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill; 2005. 2021 p. p.

    Google Scholar 

  37. Allard E, Passirani C, Benoit J-P. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials. 2009;30(12):2302–18.

    Article  CAS  PubMed  Google Scholar 

  38. Mardor Y, Roth Y, Lidar Z, Jonas T, Pfeffer R, Maier SE, et al. Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res. 2001;61(13):4971–3.

    CAS  PubMed  Google Scholar 

  39. Raghavan R, Brady ML, Rodríguez-Ponce MI, Hartlep A, Pedain C, Sampson JH. Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus. 2006;20(4):E12.

    Article  PubMed  Google Scholar 

  40. Layton PB, Greenberg HS, Stetson PL, Ensminger WD, Gyves JW. BCNU solubility and toxicity in the treatment of malignant astrocytomas. J Neurosurg. 1984;60(6):1134–7.

    Article  CAS  PubMed  Google Scholar 

  41. Liggins RT, Hunter W, Burt HM. Solid‐state characterization of paclitaxel. J Pharm Sci. 1997;86(12):1458–63.

    Article  CAS  PubMed  Google Scholar 

  42. Gross JF, Popel AS. Mathematical models of transport phenomena in normal and neoplastic tissue. Tumor Blood Circulation. Boca Raton: CRC Press; 1979. p. 169–83.

    Google Scholar 

  43. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987;47(12):3039–51.

    CAS  PubMed  Google Scholar 

  44. Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery. Science. 1995;269(5225):850.

    Article  CAS  PubMed  Google Scholar 

  45. Mitragotri S, Blankschtein D, Langer R. Transdermal drug delivery using low-frequency sonophoresis. Pharm Res. 1996;13(3):411–20.

    Article  CAS  PubMed  Google Scholar 

  46. Koike H, Tomita N, Azuma H, Taniyama Y, Yamasaki K, Kunugiza Y, et al. An efficient gene transfer method mediated by ultrasound and microbubbles into the kidney. J Gene Med. 2005;7(1):108–16.

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Paliwal S, Bankiewicz KS, Bringas JR, Heart G, Mitragotri S, et al. Ultrasound-enhanced drug transport and distribution in the brain. AAPS PharmSciTech. 2010;11(3):1005–17.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hynynen K. Ultrasound for drug and gene delivery to the brain. Adv Drug Deliv Rev. 2008;60(10):1209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nhan T, Burgess A, Lilge L, Hynynen K. Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood–brain barrier permeability. Phys Med Biol. 2014;59(20):5987.

    Article  PubMed  Google Scholar 

  50. Saucier-Sawyer JK, Seo Y-E, Gaudin A, Quijano E, Song E, Sawyer AJ, et al. Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors. J Control Release. 2016;232:103–12.

    Article  CAS  PubMed  Google Scholar 

  51. Sawyer AJ, Saucier-Sawyer JK, Booth CJ, Liu J, Patel T, Piepmeier JM, et al. Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors. Drug Del Transl Res. 2011;1(1):34–42.

    Article  CAS  Google Scholar 

  52. Kulkarni SA, Feng S-S. Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood–brain barrier. Nanomedicine. 2011;6(2):377–94.

    Article  CAS  PubMed  Google Scholar 

  53. El-Kareh AW, Secomb TW. A mathematical model for comparison of bolus injection, continuous infusion, and liposomal delivery of doxorubicin to tumor cells. Neoplasia. 2000;2(4):325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sirianni RW, Zheng M-Q, Patel TR, Shafbauer T, Zhou J, Saltzman WM, et al. Radiolabeling of Poly (lactic-co-glycolic acid)(PLGA) Nanoparticles with Biotinylated F-18 Prosthetic Groups and Imaging of Their Delivery to the Brain with Positron Emission Tomography. Bioconjug Chem. 2014;25(12):2157–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Unterberg A, Stover J, Kress B, Kiening K. Edema and brain trauma. Neuroscience. 2004;129(4):1019–27.

    Article  Google Scholar 

  56. Teo CS, Tan WHK, Lee T, Wang C-H. Transient interstitial fluid flow in brain tumors: Effect on drug delivery. Chem Eng Sci. 2005;60(17):4803–21.

    Article  CAS  Google Scholar 

  57. Yu J, Guo Y, Zhao S, Xu K. Brainstem edema caused by traumatic carotid-cavernous fistula: A case report and review of the literature. Exp Ther Med. 2015;10(2):445–50.

    PubMed  PubMed Central  Google Scholar 

  58. Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro-Oncology. 2015;17 suppl 2:ii3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Casanova F, Carney PR, Sarntinoranont M. Effect of needle insertion speed on tissue injury, stress, and backflow distribution for convection-enhanced delivery in the rat brain. PLoS ONE. 2014;9(4):e94919.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Linninger AA, Somayaji MR, Erickson T, Guo X, Penn RD. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue. J Biomech. 2008;41(10):2176–87.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors acknowledge the funding support from the National Medical Research Council (NMRC, Singapore) under the grant numbers NMRC EDG11may084, and support from the National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme. Grant Number R-706-001-101-281, National University of Singapore. The authors thank the Supercomputing and Visualization Unit (SVU) of National University of Singapore for providing facilities to perform all the simulation works in this project, and Wei-Cheng Yan for his support in literature review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Hwa Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, W., Arifin, D.Y., Lee, T.K. et al. Mathematical Modelling of Convection Enhanced Delivery of Carmustine and Paclitaxel for Brain Tumour Therapy. Pharm Res 34, 860–873 (2017). https://doi.org/10.1007/s11095-017-2114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2114-6

KEY WORDS

Navigation