Skip to main content

Advertisement

Log in

Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors

  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Direct delivery of chemotherapy agents to the brain via degradable polymer delivery systems—such as Gliadel®—is a clinically proven method for treatment of glioblastoma multiforme, but there are important limitations with the current technology—including the requirement for surgery, profound local tissue toxicity, and limitations in diffusional penetration of agents—that limit its application and effectiveness. Here, we demonstrate another technique for direct, controlled delivery of chemotherapy to the brain that provides therapeutic benefit with fewer limitations. In our new approach, camptothecin (CPT)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles are infused via convection-enhanced delivery (CED) to a stereotactically defined location in the brain, allowing simultaneous control of location, spread, and duration of drug release. To test this approach, CPT-PLGA nanoparticles (~100 nm in diameter) were synthesized with 25% drug loading. When these nanoparticles were incubated in culture with 9L gliosarcoma cells, the IC50 of CPT-PLGA nanoparticles was 0.04 μM, compared to 0.3 μM for CPT alone. CPT-PLGA nanoparticles stereotactically delivered by CED improved survival in rats with intracranial 9L tumors: the median survival for rats treated with CPT-PLGA nanoparticles (22 days) was significantly longer than unloaded nanoparticles (15 days) and free CPT infusion (17 days). CPT-PLGA nanoparticle treatment also produced significantly more long-term survivors (30% of animals were free of disease at 60 days) than any other treatment. CPT was present in tissues harvested up to 53 days post-infusion, indicating prolonged residence at the local site of administration. These are the first results to demonstrate the effectiveness of combining polymer-controlled release nanoparticles with CED in treating fatal intracranial tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Attenello FJ, Mukherjee D et al (2008) Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol 15(10):2887–2893

    Article  PubMed  Google Scholar 

  • Blum JS, Saltzman WM (2008) High loading efficiency and tunable release of plasmid DNA encapsulated in submicron particles fabricated from PLGA conjugated with poly-L-lysine. J Control Release 129(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Bobo RH, Laske DW et al (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91(6):2076–2080

    Article  CAS  PubMed  Google Scholar 

  • Brandsma D, van den Bent MJ (2007) Molecular targeted therapies and chemotherapy in malignant gliomas. Curr Opin Oncol 19(6):598–605

    Article  CAS  PubMed  Google Scholar 

  • Brem H, Mahaley MS et al (1991) Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg 74:441–446

    Article  CAS  PubMed  Google Scholar 

  • Chen MY, Hoffer A et al (2005) Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system. J Neurosurg 103(2):311–319

    Article  PubMed  Google Scholar 

  • Deorah S, Lynch CF et al (2006) Trends in brain cancer incidence and survival in the United States: surveillance, epidemiology, and end results program, 1973 to 2001. Neurosurg Focus 20(4):E1

    Article  PubMed  Google Scholar 

  • Ertl B, Platzer P et al (1999) Poly(D, L-lactic-co-glycolic acid) microspheres for sustained delivery and stabilization of camptothecin. J Control Release 61(3):305–317

    Article  CAS  PubMed  Google Scholar 

  • Fahmy TM, Samstein RM et al (2005) Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials 26(28):5727–5736

    Article  CAS  PubMed  Google Scholar 

  • Friedman HS, Keir ST et al (2003) The emerging role of irinotecan (CPT-11) in the treatment of malignant glioma in brain tumors. Cancer 97(9 Suppl):2359–2362

    Article  CAS  PubMed  Google Scholar 

  • Fung LK, Shin M et al (1996) Chemotherapeutic drugs released from polymers: distribution of 1, 3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res 13(5):671–682

    Article  CAS  PubMed  Google Scholar 

  • Fung LK, Ewend MG et al (1998) Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res 58:672–684

    CAS  PubMed  Google Scholar 

  • Groothuis DR (2000) The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-oncology 2(1):45–59

    CAS  PubMed  Google Scholar 

  • Hall WA, Sherr GT (2006) Convection-enhanced delivery: targeted toxin treatment of malignant glioma. Neurosurg Focus 20(4):E10

    Article  PubMed  Google Scholar 

  • Kunwar S, Prados MD et al (2007) Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol 25(7):837–844

    Article  CAS  PubMed  Google Scholar 

  • Laske DW, Morrison PF et al (1997) Chronic interstitial infusion of protein to primate brain: determination of drug distribution and clearance with single-photon emission computerized tomography imaging. J Neurosurg 87(4):586–594

    Article  CAS  PubMed  Google Scholar 

  • Lawson HC, Sampath P et al (2007) Interstitial chemotherapy for malignant gliomas: the Johns Hopkins experience. J Neurooncol 83:61–70

    Article  CAS  PubMed  Google Scholar 

  • Lidar Z, Mardor Y et al (2004) Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 100(3):472–479

    Article  CAS  PubMed  Google Scholar 

  • Lieberman DM, Laske DW et al (1995) Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurg 82(6):1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Jiang Z et al (2009) Poly(ω-pentadecalactone-co-butylene-co-succinate) nanoparticles as biodegradable carriers for camptothecin delivery. Biomaterials 30:5707–5719

    Article  CAS  PubMed  Google Scholar 

  • Loh JP, Ahmed AE (1990) Determination of camptothecin in biological fluids using reversed-phase high-performance liquid chromatography with fluorescence detection. J Chromatogr 530(2):367–376

    CAS  PubMed  Google Scholar 

  • Mamot C, Nguyen JB et al (2004) Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J Neurooncol 68(1):1–9

    Article  PubMed  Google Scholar 

  • Neeves KB, Sawyer AJ et al (2007) Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles. Brain Res 1180:121–132

    Article  CAS  PubMed  Google Scholar 

  • Noble CO, Krauze MT et al (2006) Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy. Cancer Res 66(5):2801–2806

    Article  CAS  PubMed  Google Scholar 

  • O'Leary J, Muggia FM (1998) Camptothecins: a review of their development and schedules of administration. Eur J Cancer 34(10):1500–1508

    Article  PubMed  Google Scholar 

  • Park J, Fong PM et al (2009) PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine 5(4):410–418

    CAS  PubMed  Google Scholar 

  • Parney IF, Chang SM (2003) Current chemotherapy for glioblastoma. Cancer J 9(3):149–156

    Article  CAS  PubMed  Google Scholar 

  • Popperl G, Goldbrunner R et al (2005) O-(2-[18 F]fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 32(9):1018–1025

    Article  CAS  PubMed  Google Scholar 

  • Raghavan R, Brady ML et al (2006) Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 20(4):E12

    Article  PubMed  Google Scholar 

  • Rasband WS (1997–2008) ImageJ. http://rsb.info.nih.gov/ij/. Bethesda, Maryland, U. S. National Institutes of Health

  • Saito R, Bringas JR et al (2004) Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res 64(7):2572–2579

    Article  CAS  PubMed  Google Scholar 

  • Saito R, Krauze MT et al (2005) Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp Neurol 196(2):381–389

    Article  CAS  PubMed  Google Scholar 

  • Saito R, Krauze MT et al (2006) Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model. Neuro-Oncology 8(3):205–214

    Article  CAS  PubMed  Google Scholar 

  • Sampath P, Amundson E et al (2003) Camptothecin analogs in malignant gliomas: comparative analysis and characterization. J Neurosurg 98(3):570–577

    Article  CAS  PubMed  Google Scholar 

  • Sampson JH, Raghavan R et al (2007) Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions. Neuro Oncology 9(3):343–353

    Article  CAS  PubMed  Google Scholar 

  • Sawyer AJ, Piepmeier JM et al (2006) New methods for direct delivery of chemotherapy for treating brain tumors. Yale J Biol Med 79(3–4):141–152

    CAS  PubMed  Google Scholar 

  • Shimamura T, Husain SR et al (2006) The IL-4 and IL-13 pseudomonas exotoxins: new hope for brain tumor therapy. Neurosurg Focus 20(4):E11

    Article  PubMed  Google Scholar 

  • Storm PB, Moriarity JL et al (2002) Polymer delivery of camptothecin against 9L gliosarcoma: release, distribution, and efficacy. J Neurooncol 56(3):209–217

    Article  PubMed  Google Scholar 

  • Stupp R, Hegi ME et al (2007) Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 25(26):4127–4136

    Article  CAS  PubMed  Google Scholar 

  • Tanner PG, Holtmannspotter M et al (2007) Effects of drug efflux on convection-enhanced paclitaxel delivery to malignant gliomas: technical note. Neurosurgery 61(4):E880-2, discussion E882

    Article  Google Scholar 

  • Tewes F, Munnier E et al (2007) Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods. Eur J Pharm Biopharm 66(3):488–492

    Article  CAS  PubMed  Google Scholar 

  • Weber EL, Goebel EA (2005) Cerebral edema associated with Gliadel wafers: two case studies. Neuro-Oncology 7:84–89

    Article  PubMed  Google Scholar 

  • Weingart JD, Thompson RC et al (1995) Local delivery of the topoisomerase I inhibitor camptothecin sodium prolongs survival in the rat intracranial 9L gliosarcoma model. Int J Cancer 62(5):605–609

    Article  CAS  PubMed  Google Scholar 

  • Westphal M, Hilt DC et al (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-Oncology 5:79–88

    CAS  PubMed  Google Scholar 

  • Win KY, Feng SS (2006) In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D, L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation. Biomaterials 27(10):2285–2291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health (NS-045236). AJS was supported by a training grant from the National Institutes of Health (T90 DK-070068). JL was partially supported by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Mark Saltzman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawyer, A.J., Saucier-Sawyer, J.K., Booth, C.J. et al. Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors. Drug Deliv. and Transl. Res. 1, 34–42 (2011). https://doi.org/10.1007/s13346-010-0001-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-010-0001-3

Keywords

Navigation