Skip to main content
Log in

N-acetylcysteine Protects Mice from High Fat Diet-induced Metabolic Disorders

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To study the effects of N-acetylcysteine (NAC, C5H9NO3S) on diet-induced obesity and obesity-related metabolic disorders.

Methods

Six-week-old male C57BL/6 mice fed a chow or high-fat diet (HFD) were treated with NAC (2 g/L) in drinking water for 11 weeks. Its influences on body weight and food intake were manually measured, and influence on body composition were analyzed by magnetic residence imaging. Glucose meter and ELISA were used to determine serum glucose and insulin levels, as well as lipid content in the liver. The effects of NAC treatment on mRNA levels of genes involved in inflammation, thermogenesis, and lipid metabolism in various tissues were determined by real time PCR.

Results

NAC supplementation inhibited the increase of fat mass and the development of obesity when mice were fed an HFD. NAC treatment significantly lowered HFD-induced macrophage infiltration, and enhanced adiponectin gene expression, resulting in reduced hyperglycemia and hyperinsulinemia, and improvement of insulin resistance. NAC oral administration suppressed hepatic lipid accumulation, as evidenced by lower levels of triglyceride and cholesterol in the liver. The beneficial effects are associated with a decrease of hepatic Pparγ and its target gene expression, and an increase in the expression of genes responsible for lipid oxidation and activation of farnesoid X receptor. Furthermore, NAC treatment also stimulates expression of thermogenic genes.

Conclusion

These results provide direct proof of the protective potential of NAC against HFD-induced obesity and obesity-associated metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BAT:

Brown adipose tissue

CD68:

Cluster of differentiation 68

Cox2:

Cyclooxygenase 2

Cpt1:

Carnitine palmitoyltransferase 1

Cyp7a1:

Cholesterol 7 alpha-hydroxylase

Dio2:

Type II iodothyronine deiodinase

FXR:

Farnesoid X receptor

Gapdh:

Glyceraldehyde-3-Phosphate Dehydrogenase

GTT:

Glucose tolerance test

H&E:

Haematoxylin and eosin stain

HDL:

High-density lipoprotein

HFD:

High fat diet

Inos:

Inducible nitric oxide synthase

ITT:

Insulin tolerance test

LDL:

Low-density lipoprotein

LPS:

Lipopolysaccharide

Mcp1:

Monocyte chemotactic protein 1

Mgat1:

Monoacylglycerol O-acyltransferase 1

NADPH:

Nicotinamide adenine dinucleotide phosphate

Pgc1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

Ppar:

Peroxisome proliferator-activated receptor

RT-PCR:

Real time PCR

SD:

Standard deviation

Shp:

Small heterodimer partner

Tnfα:

Tumor necrosis factor alpha

Ucp:

Uncoupling Protein

WAT:

White adipose tissue

REFERENCES

  1. Millea PJ. N-acetylcysteine: multiple clinical applications. Am Fam Physician. 2009;80(3):265–9.

    PubMed  Google Scholar 

  2. Kelly GS. Clinical applications of N-acetylcysteine. Altern Med Rev. 1998;3(2):114–27.

    CAS  PubMed  Google Scholar 

  3. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-Acetylcysteine--a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007;7(4):355–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tirouvanziam R, Conrad CK, Bottiglieri T, Herzenberg LA, Moss RB, Herzenberg LA. High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosis. Proc Natl Acad Sci U S A. 2006;103(12):4628–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tanaka Y, Gleason CE, Tran PO, Harmon JS, Robertson RP. Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci U S A. 1999;96(19):10857–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McKinnon CM, Docherty K. Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function. Diabetologia. 2001;44(10):1203–14.

    Article  CAS  PubMed  Google Scholar 

  7. Song D, Hutchings S, Pang CC. Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eur J Pharmacol. 2005;508(1–3):205–10.

    Article  CAS  PubMed  Google Scholar 

  8. Diniz YS, Rocha KK, Souza GA, Galhardi CM, Ebaid GM, Rodrigues HG. Effects of N-acetylcysteine on sucrose-rich diet-induced hyperglycaemia, dyslipidemia and oxidative stress in rats. Eur J Pharmacol. 2006;543(1–3):151–7.

    Article  CAS  PubMed  Google Scholar 

  9. Blouet C, Mariotti F, Azzout-Marniche D, Mathe V, Mikogami T, Tome D, et al. Dietary cysteine alleviates sucrose-induced oxidative stress and insulin resistance. Free Radic Biol Med. 2007;42(7):1089–97.

    Article  CAS  PubMed  Google Scholar 

  10. Ho E, Chen G, Bray TM. Supplementation of N-acetylcysteine inhibits NFkappaB activation and protects against alloxan-induced diabetes in CD-1 mice. FASEB J. 1999;13(13):1845–54.

    CAS  PubMed  Google Scholar 

  11. Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, et al. Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity. Diabetes. 1999;48(12):2398–406.

    Article  CAS  PubMed  Google Scholar 

  12. Lin CC, Yin MC, Hsu CC, Lin MP. Effect of five cysteine-containing compounds on three lipogenic enzymes in Balb/cA mice consuming a high saturated fat diet. Lipids. 2004;39(9):843–8.

    Article  CAS  PubMed  Google Scholar 

  13. Yang R, Le G, Li A, Zheng J, Shi Y. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet. Nutrition. 2006;22(11–12):1185–91.

    Article  CAS  PubMed  Google Scholar 

  14. Korou LM, Agrogiannis G, Pantopoulou A, Vlachos IS, Iliopoulos D, Karatzas T, et al. Comparative antilipidemic effect of N-acetylcysteine and sesame oil administration in diet-induced hypercholesterolemic mice. Lipids Health Dis. 2010;9:23.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Novelli EL, Santos PP, Assalin HB, Souza G, Rocha K, Ebaid GX, et al. N-acetylcysteine in high-sucrose diet-induced obesity: energy expenditure and metabolic shifting for cardiac health. Pharm Res. 2009;59(1):74–9.

    Article  CAS  Google Scholar 

  16. Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, Esquivel-Soto J, Morales-Gonzalez A, Esquivel-Chirino C, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011;12(5):3117–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma Y, Huang Y, Yan L, Gao M, Liu D. Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance. Pharm Res. 2013;30(5):1447–57.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ma Y, Gao M, Liu D. Chlorogenic acid improves high Fat diet-induced hepatic steatosis and insulin resistance in mice. Pharm Res. 2015;32(4):1200–9.

    Article  CAS  PubMed  Google Scholar 

  19. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR, et al. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem. 2003;278(36):34268–76.

    Article  CAS  PubMed  Google Scholar 

  21. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oliver E, McGillicuddy F, Phillips C, Toomey S, Roche HM. The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA. Proc Nutr Soc. 2010;69(2):232–43.

    Article  CAS  PubMed  Google Scholar 

  23. Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003;112(12):1785–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bu L, Gao M, Qu S, Liu D. Intraperitoneal injection of clodronate liposomes eliminates visceral adipose macrophages and blocks high-fat diet-induced weight gain and development of insulin resistance. AAPS J. 2013;15(4):1001–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cui R, Gao M, Qu S, Liu D. Overexpression of superoxide dismutase 3 gene blocks high-fat diet-induced obesity, fatty liver and insulin resistance. Gene Ther. 2014;21(9):840–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Calzadilla P, Sapochnik D, Cosentino S, Diz V, Dicelio L, Calvo JC, et al. N-acetylcysteine reduces markers of differentiation in 3 T3-L1 adipocytes. Int J Mol Sci. 2011;12(10):6936–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pajonk F, Riess K, Sommer A, McBride WH. N-acetyl-L-cysteine inhibits 26S proteasome function: implications for effects on NF-kappaB activation. Free Radic Biol Med. 2002;32(6):536–43.

    Article  CAS  PubMed  Google Scholar 

  28. Oka S, Kamata H, Kamata K, Yagisawa H, Hirata H. N-acetylcysteine suppresses TNF-induced NF-kappaB activation through inhibition of IkappaB kinases. FEBS Lett. 2000;472(2–3):196–202.

    Article  CAS  PubMed  Google Scholar 

  29. Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012;15(5):635–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee BC, Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta. 2014;1842(3):446–62.

    Article  CAS  PubMed  Google Scholar 

  31. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995;270(45):26746–9.

    Article  CAS  PubMed  Google Scholar 

  32. Diez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol. 2003;148(3):293–300.

    Article  CAS  PubMed  Google Scholar 

  33. Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002;277(29):25863–6.

    Article  CAS  PubMed  Google Scholar 

  34. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8(7):731–7.

    Article  CAS  PubMed  Google Scholar 

  35. Ma Y, Liu D. Hydrodynamic delivery of adiponectin and adiponectin receptor 2 gene blocks high-fat diet-induced obesity and insulin resistance. Gene Ther. 2013;20(8):846–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sekiya M, Hiraishi A, Touyama M, Sakamoto K. Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells. Biochem Biophys Res Commun. 2008;375(4):602–7.

    Article  CAS  PubMed  Google Scholar 

  37. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359.

    Article  CAS  PubMed  Google Scholar 

  38. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17(2):200–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

We thank Mrs. Francisca Burnley for proofreading and English editing. This work was supported in part by the National Institute of Health [RO1 HL098295].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexi Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 23 kb)

Fig. S1

NAC treatment represses LPS-induced expression of inflammation response genes in macrophages. RAW264.7 cells were treated with LPS (100 ng/ml) in the presence of various doses of NAC for 24 h. Cells were harvested and total RNA was extracted for RT-PCR analysis. Relative mRNA levels of (a) Inos; (b) Cox2; (c) Mcp1; and (d) Tnfα. **P < 0.01 compared to LPS treatment without NAC (n = 3). (GIF 50 kb)

High resolution image (TIF 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Gao, M. & Liu, D. N-acetylcysteine Protects Mice from High Fat Diet-induced Metabolic Disorders. Pharm Res 33, 2033–2042 (2016). https://doi.org/10.1007/s11095-016-1941-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1941-1

KEY WORDS

Navigation