Skip to main content
Log in

Benefits, mechanisms, and risks of intermittent fasting in metabolic syndrome and type 2 diabetes

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

One of the emergent nutritional strategies for improving multiple features of cardiometabolic diseases is the practice of intermittent fasting (IF), which consists of alternating periods of eating and fasting. IF can reduce circulating glucose and insulin levels, fat mass, and the risk of developing age-related pathologies. IF appears to upregulate evolution-conserved adaptive cellular responses, such as stress-response pathways, autophagy, and mitochondrial function. IF was also observed to modulate the circadian rhythms of hormones like insulin or leptin, among others, which levels change in conditions of food abundance and deficit. However, some contradictory results regarding the duration of the interventions and the anterior metabolic status of the participants suggest that more and longer studies are needed in order to draw conclusions. This review summarizes the current knowledge regarding the role of IF in the modulation of mechanisms involved in type 2 diabetes, as well as the risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Ajabnoor GMA, Bahijri S, Shaik NA et al (2017) Ramadan fasting in Saudi Arabia is associated with altered expression of CLOCK, DUSP and IL-1alpha genes, as well as changes in cardiometabolic risk factors. PLoS ONE 12:1–12. https://doi.org/10.1371/journal.pone.0174342

    Article  CAS  Google Scholar 

  2. Al-Rawi N, Madkour M, Jahrami H et al (2020) Effect of diurnal intermittent fasting during Ramadan on ghrelin, leptin, melatonin, and cortisol levels among overweight and obese subjects: a prospective observational study. PLoS ONE 15:1–15. https://doi.org/10.1371/journal.pone.0237922

    Article  CAS  Google Scholar 

  3. Antoni R, Johnston KL, Collins AL, Robertson MD (2017) Effects of intermittent fasting on glucose and lipid metabolism. Proc Nutr Soc 76(3):361–368. https://doi.org/10.1017/S0029665116002986

    Article  CAS  PubMed  Google Scholar 

  4. Arnason T, Bowen M, Mnasell K (2017) Effects of intermittent fasting on health markers in those with type 2 diabetes: a pilot study. World J Diabetes 8(4):154–164

    Article  Google Scholar 

  5. Baumeier C, Kaiser D, Heeren J et al (2015) Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice. Biochim Biophys Acta - Mol Cell Biol Lipids 1851:566–576. https://doi.org/10.1016/j.bbalip.2015.01.013

    Article  CAS  Google Scholar 

  6. Bayliak MM, Sorochynska OM, Kuzniak OV et al (2021) Middle age as a turning point in mouse cerebral cortex energy and redox metabolism: modulation by every-other-day fasting. Exp Gerontol 145:111182. https://doi.org/10.1016/j.exger.2020.111182

    Article  CAS  PubMed  Google Scholar 

  7. Boutant M, Kulkarni SS, Joffraud M et al (2016) SIRT1 gain of function does not mimic or enhance the adaptations to intermittent fasting. Cell Rep 14:2068–2075. https://doi.org/10.1016/j.celrep.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  8. Carling D (2017) AMPK signalling in health and disease. Curr Opin cel Biol 45:31–37

    Article  CAS  Google Scholar 

  9. Carter S, Clifton PM, Keogh JB (2018) Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: a randomized noninferiority trial. JAMA Netw open 1(3):e180756. https://doi.org/10.1001/jamanetworkopen.2018.0756

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cerqueira FM, Cunha FM, Caldeira CC et al (2011) Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance. Free Radic Biol Med 51:1454–1460. https://doi.org/10.1016/j.freeradbiomed.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  11. Chausse B, Vieira-Lara MA, Sanchez AB et al (2015) Intermittent fasting results in tissue-specific changes in bioenergetics and redox state. PLoS ONE 10:1–13. https://doi.org/10.1371/journal.pone.0120413

    Article  CAS  Google Scholar 

  12. Cherkas A, Holota S, Mdzinarashvili T et al (2020) Glucose as a major antioxidant: when, what for and why it fails? Antioxidants 9:1–20. https://doi.org/10.3390/antiox9020140

    Article  CAS  Google Scholar 

  13. Cho Y, Hong N, Kim K et al (2019) The effectiveness of intermittent fasting to reduce body mass index and glucose metabolism: a systematic review and meta-analysis. J Clin Med 8(10):1645. https://doi.org/10.3390/jcm8101645

    Article  CAS  PubMed Central  Google Scholar 

  14. Chung H, Chou W, Sears D et al (2016) Time-restricted feeding improves insulin resistance and hepatic steatosis in a mouse model of postmenopausal obesity. Metabolism 65(12):1743–1754. https://doi.org/10.1016/j.metabol.2016.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clayton DJ, Biddle J, Maher T et al (2018) 24-H severe energy restriction impairs postprandial glycaemic control in young, lean males. Br J Nutr 120:1107–1116. https://doi.org/10.1017/S0007114518002568

    Article  CAS  PubMed  Google Scholar 

  16. Crupi AN, Haase J, Brandhorst S, Longo VD (2020) Periodic and intermittent fasting in diabetes and cardiovascular disease. Springer Sci Media 20(12):83

    Google Scholar 

  17. Dedual M, Wueest S, Borsigova M, Daniel K (2019) Intermittent fasting improves metabolic flexibility in short-term high-fat diet-fed mice. Am J Physiol 317(5):E773–E782

    CAS  Google Scholar 

  18. Dinicolantonio JJ, Mccarty M (2019) Autophagy-induced degradation of Notch1, achieved through intermittent fasting, may promote beta cell neogenesis: implications for reversal of type 2 diabetes. Open Hear 6:1–10. https://doi.org/10.1136/openhrt-2019-001028

    Article  Google Scholar 

  19. Dorighello GG, Rovani JC, Luhman CJF et al (2013) Food restriction by intermittent fasting induces diabetes and obesity and aggravates spontaneous atherosclerosis development in hypercholesterolaemic mice. Br J Nutr 111(6):979–986. https://doi.org/10.1017/S0007114513003383

    Article  CAS  PubMed  Google Scholar 

  20. Faris MAI, Jahrami H, BaHammam A et al (2020) A systematic review, meta-analysis, and meta-regression of the impact of diurnal intermittent fasting during Ramadan on glucometabolic markers in healthy subjects. Diabetes Res Clin Pract 165:1–76. https://doi.org/10.1016/j.diabres.2020.108226

    Article  CAS  Google Scholar 

  21. Faris MAIE, Madkour MI, Obaideen AK et al (2019) Effect of Ramadan diurnal fasting on visceral adiposity and serum adipokines in overweight and obese individuals. Diabetes Res Clin Pract 153:166–175. https://doi.org/10.1016/j.diabres.2019.05.023

    Article  CAS  PubMed  Google Scholar 

  22. Di FA, Di GC, Bernier M, De CR (2018) A time to fast Diet Heal 775:770–775

    Google Scholar 

  23. Furmli S, Elmasry R, Ramos M, Fung J (2018) Therapeutic use of intermittent fasting for people with type 2 diabetes as an alternative to insulin. BMJ Case Rep 2018:bcr-2017-221854. https://doi.org/10.1136/bcr-2017-221854

    Article  PubMed  Google Scholar 

  24. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gnanou JV, Caszo BA, Khalil KM et al (2015) Effects of Ramadan fasting on glucose homeostasis and adiponectin levels in healthy adult males. J Diabetes Metab Disord 14:55. https://doi.org/10.1186/s40200-015-0183-9

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gotthardt JD, Verpeut JL, Yeomans BL et al (2016) Intermittent fasting promotes fat loss with lean mass retention, increased hypothalamic norepinephrine content, and increased neuropeptide Y gene expression in diet-induced obese male mice. Endocrinology 157:679–691. https://doi.org/10.1210/en.2015-1622

    Article  CAS  PubMed  Google Scholar 

  27. Gow ML, Garnett SP, Baur LA, Lister NB (2016) The effectiveness of different diet strategies to reduce type 2 diabetes risk in youth. Nutrients 8:1–13. https://doi.org/10.3390/nu8080486

    Article  CAS  Google Scholar 

  28. Grajower MM, Horne BD (2019) Clinical management of intermittent fasting in patients with diabetes mellitus. Nutrients 11(4):873

    Article  CAS  Google Scholar 

  29. Hallan S, Sharma K (2016) The role of mitochondria in diabetic kidney disease. Curr Diab Rep 16:1–9. https://doi.org/10.1007/s11892-016-0748-0

    Article  CAS  Google Scholar 

  30. Hammer SS, Vieira CP, McFarland D et al (2021) Fasting and fasting-mimicking treatment activate SIRT1/LXRα and alleviate diabetes-induced systemic and microvascular dysfunction. Diabetologia 64:1674–1689. https://doi.org/10.1007/s00125-021-05431-5

    Article  CAS  PubMed  Google Scholar 

  31. Hutchison AT, Liu B, Wood RE et al (2019) Effects of intermittent versus continuous energy intakes on insulin sensitivity and metabolic risk in women with overweight. Obesity 27:50–58. https://doi.org/10.1002/oby.22345

    Article  CAS  PubMed  Google Scholar 

  32. Jeon SM (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48:e245. https://doi.org/10.1038/emm.2016.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kanda Y, Hashiramoto M, Shimoda M et al (2015) Dietary restriction preserves the mass and function of pancreatic β cells via cell kinetic regulation and suppression of oxidative/ER stress in diabetic mice. J Nutr Biochem 26:219–226. https://doi.org/10.1016/j.jnutbio.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  34. Karras SN, Koufakis T, Adamidou L et al (2020) Effects of orthodox religious fasting versus combined energy and time restricted eating on body weight, lipid concentrations and glycaemic profile. Int J Food Sci Nutr 72:1–11. https://doi.org/10.1080/09637486.2020.1760218

    Article  CAS  Google Scholar 

  35. Khedkar PH (2020) Intermittent fasting—the new lifestyle? Acta Physiol 229(4):e13518. https://doi.org/10.1111/apha.13518

    Article  CAS  Google Scholar 

  36. Koves TR, Ussher JR, Noland RC et al (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56. https://doi.org/10.1016/j.cmet.2007.10.013

    Article  CAS  PubMed  Google Scholar 

  37. Kroeger CM, Klempel MC, Bhutani S et al (2012) Improvement in coronary heart disease risk factors during an intermittent fasting/calorie restriction regimen: relationship to adipokine modulations. Nutr Metab 9:1–8. https://doi.org/10.1186/1743-7075-9-98

    Article  CAS  Google Scholar 

  38. Lettieri-Barbato D, Giovannetti E, Aquilano K (2016) Effects of dietary restriction on adipose mass and biomarkers of healthy aging in human. Aging (Albany NY) 8:3341–3355. https://doi.org/10.18632/aging.101122

    Article  CAS  Google Scholar 

  39. Li G, Xie C, Lu S et al (2018) Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab 26:672–685. https://doi.org/10.1016/j.cmet.2017.08.019.Intermittent

    Article  Google Scholar 

  40. Liu B, Hutchison A, Thompson C et al (2020) Effects of intermittent fasting or calorie restriction on markers of lipid metabolism in human skeletal muscle. J Clin Endocrinol Metab 06(3):e1389–e1399

    Article  Google Scholar 

  41. Liu H, Javaheri A, Godar RJ et al (2017) Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway. Autophagy 13:1952–1968. https://doi.org/10.1080/15548627.2017.1368596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Y, Cheng A, Li YJ et al (2019) SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice. Nat Commun 10:1–11. https://doi.org/10.1038/s41467-019-09897-1

    Article  CAS  Google Scholar 

  43. Liu Z, Dai X, Zhang H et al (2020) Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat Commun 11:1–14. https://doi.org/10.1038/s41467-020-14676-4

    Article  CAS  Google Scholar 

  44. de Souza Marinho T, Borges CC, Aguila MB, Mandarim-de-Lacerda CA (2020) Intermittent fasting benefits on alpha- and beta-cell arrangement in diet-induced obese mice pancreatic islet. J Diabetes Complications 34:107497. https://doi.org/10.1016/j.jdiacomp.2019.107497

    Article  Google Scholar 

  45. de Souza Marinho T, Ornellas F, Aguila MB, Mandarim-de-Lacerda CA (2020) Browning of the subcutaneous adipocytes in diet-induced obese mouse submitted to intermittent fasting. Mol Cell Endocrinol 513:1–9. https://doi.org/10.1016/j.mce.2020.110872

    Article  CAS  Google Scholar 

  46. de Souza Marinho T, Ornellas F, Barbosa-da-Silva S et al (2019) Beneficial effects of intermittent fasting on steatosis and inflammation of the liver in mice fed a high-fat or a high-fructose diet. Nutrition 65:103–112. https://doi.org/10.1016/j.nut.2019.02.020

    Article  CAS  Google Scholar 

  47. Matafome P, Seiça R (2017) Function and dysfunction of adipose tissue. Adv Neurobiol 19:3–31. https://doi.org/10.1007/978-3-319-63260-5_1

    Article  PubMed  Google Scholar 

  48. Mattson M, Longo V, Harvie M (2017) Impact of intermittent fasting on health and disease processes. Ageing Res Rev 76:139–148. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  Google Scholar 

  49. Mitchell SJ, Bernier M, Mattison JA et al (2019) Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab 29:221–228. https://doi.org/10.1016/j.cmet.2018.08.011.Daily

    Article  CAS  PubMed  Google Scholar 

  50. Munhoz AC, Vilas-boas EA, Panveloski-costa AC et al (2020) Intermittent fasting for twelve weeks leads to increases in fat mass and hyperinsulinemia in young female Wistar rats. Nutrients 12(4):1029

    Article  CAS  Google Scholar 

  51. Muñoz-Hernández L, Márquez-López Z, Mehta R, Aguilar-Salinas CA (2020) Intermittent fasting as part of the management for T2DM: from animal models to human clinical studies. Curr Diab Rep 20:1–10. https://doi.org/10.1007/s11892-020-1295-2

    Article  Google Scholar 

  52. Papamichou D, Panagiotakos DB, Itsiopoulos C (2019) Dietary patterns and management of type 2 diabetes: a systematic review of randomised clinical trials. Nutr Metab Cardiovasc Dis 29:531–543. https://doi.org/10.1016/j.numecd.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  53. Park S, Yoo KM, Hyun JS, Kang S (2017) Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets. J Nutr Biochem 40:14–22. https://doi.org/10.1016/j.jnutbio.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  54. Persynaki A, Karras S, Pichard C (2017) Unraveling the metabolic health benefits of fasting related to religious beliefs: a narrative review. Nutrition 35:14–20. https://doi.org/10.1016/j.nut.2016.10.005

    Article  PubMed  Google Scholar 

  55. Pinto AM, Bordoli C, Buckner LP et al (2019) Intermittent energy restriction is comparable to continuous energy restriction for cardiometabolic health in adults with central obesity : A randomized controlled trial; the Met-IER study. Clin Nutr 39(6):1753–1763. https://doi.org/10.1016/j.clnu.2019.07.014

    Article  CAS  PubMed  Google Scholar 

  56. Qiao Q, Bouwman FG, Van Baak MA et al (2019) Glucose restriction plus refeeding in vitro induce changes of the human adipocyte secretome with an impact on complement factors and cathepsins. Int J Mol Sci 20:1–17. https://doi.org/10.3390/ijms20164055

    Article  CAS  Google Scholar 

  57. Quiclet C, Dittberner N, Gässler A et al (2019) Pancreatic adipocytes mediate hypersecretion of insulin in diabetes-susceptible mice. Metabolism 97:9–17. https://doi.org/10.1016/j.metabol.2019.05.005

    Article  CAS  PubMed  Google Scholar 

  58. Radhakishun N, Blokhuis C, Van Vliet M et al (2014) Intermittent fasting during Ramadan causes a transient increase in total, LDL, and HDL cholesterols and hs-CRP in ethnic obese adolescents. Eur J Pediatr 173:1103–1106. https://doi.org/10.1007/s00431-014-2276-8

    Article  CAS  PubMed  Google Scholar 

  59. Real-Hohn A, Navegantes C, Ramos K et al (2018) The synergism of high-intensity intermittent exercise and every-other-day intermittent fasting regimen on energy metabolism adaptations includes hexokinase activity and mitochondrial efficiency. PLoS ONE 13(12):e0202784. https://doi.org/10.1371/journal.pone.0202784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Réda A, Wassil M, Mériem M et al (2020) Food timing, circadian rhythm and chrononutrition: a systematic review of time-restricted eating’s effects on human health. Nutrients 12:1–15. https://doi.org/10.3390/nu12123770

    Article  Google Scholar 

  61. Rodrigues L, Crisóstomo J, Matafome P et al (2011) Dietary restriction improves systemic and muscular oxidative stress in type 2 diabetic Goto-Kakizaki rats. J Physiol Biochem 67:613–619. https://doi.org/10.1007/s13105-011-0108-0

    Article  CAS  PubMed  Google Scholar 

  62. Shulman G (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176. https://doi.org/10.1111/j.1464-5491.2005.01566.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sorochynska OM, Bayliak MM, Gospodaryov DV et al (2019) Every-other-day feeding decreases glycolytic and mitochondrial energy-producing potentials in the brain and liver of young mice. Front Physiol 10:1–15. https://doi.org/10.3389/fphys.2019.01432

    Article  Google Scholar 

  64. Spezani R, da Silva RR, Martins FF et al (2020) Intermittent fasting, adipokines, insulin sensitivity, and hypothalamic neuropeptides in a dietary overload with high-fat or high-fructose diet in mice. J Nutr Biochem 83:108419. https://doi.org/10.1016/j.jnutbio.2020.108419

    Article  CAS  PubMed  Google Scholar 

  65. Stockman MC, Thomas D, Burke J, Apovian CM (2018) Intermittent fasting: is the wait worth the weight? Curr Obes Rep 7:172–185. https://doi.org/10.1007/s13679-018-0308-9

    Article  PubMed  PubMed Central  Google Scholar 

  66. St-Onge MP, Ard J, Baskin ML et al (2017) Meal timing and frequency: implications for cardiovascular disease prevention. Circulation 135:e96–e121. https://doi.org/10.1161/CIR.0000000000000476

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sutton E, Beyl R, Early K et al (2019) Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab 27:1212–1221. https://doi.org/10.1016/j.cmet.2018.04.010.Early

    Article  Google Scholar 

  68. Theron G, Peter J, Van Z-S et al (2018) Time-restricted feeding of a high fat diet in C57BL/6 male mice reduces adiposity, but does not protect against increased systemic inflammation. Appl Physiol Nutr Metab 184(1):132–140. https://doi.org/10.1164/rccm.201101-0056OC

    Article  Google Scholar 

  69. Varady KA (2016) Impact of intermittent fasting on glucose homeostasis. Curr Opin Clin Nutr Metab Care 19(4):300–302. https://doi.org/10.1097/MCO.0000000000000291

    Article  CAS  PubMed  Google Scholar 

  70. Varady KA, Allister CA, Roohk DJ, Hellerstein MK (2010) Improvements in body fat distribution and circulating adiponectin by alternate-day fasting versus calorie restriction. J Nutr Biochem 21:188–195. https://doi.org/10.1016/j.jnutbio.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  71. VarkanehKord H, Tinsley GM, Santos HO et al (2020) The influence of fasting and energy-restricted diets on leptin and adiponectin levels in humans: a systematic review and meta-analysis. Clin Nutr 40(4):1811–1821. https://doi.org/10.1016/j.clnu.2020.10.034

    Article  CAS  Google Scholar 

  72. Wan R, Ahmet I, Brown M et al (2010) Cardioprotective effect of intermittent fasting is associated with an elevation of adiponectin levels in rats. J Nutr Biochem 21:413–417. https://doi.org/10.1016/j.jnutbio.2009.01.020

    Article  CAS  PubMed  Google Scholar 

  73. Wang P, Zhang RY, Song J et al (2012) Loss of AMP-activated protein kinase-α2 impairs the insulin-sensitizing effect of calorie restriction in skeletal muscle. Diabetes 61:1051–1061. https://doi.org/10.2337/db11-1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wilson RA, Deasy W, Stathis CG et al (2018) Intermittent fasting with or without exercise prevents weight gain and improves lipids in diet-induced obese mice. Nutrients 10:1–15. https://doi.org/10.3390/nu10030346

    Article  CAS  Google Scholar 

  75. Wycherley TP, Brinkworth GD, Noakes M et al (2008) Effect of caloric restriction with and without exercise training on oxidative stress and endothelial function in obese subjects with type 2 diabetes. Diabetes Obes Metab 10:1062–1073. https://doi.org/10.1111/j.1463-1326.2008.00863.x

    Article  CAS  PubMed  Google Scholar 

  76. Ye Y, Xu H, Xie Z et al (2020) Time-restricted feeding reduces the detrimental effects of a high-fat diet, possibly by modulating the circadian rhythm of hepatic lipid metabolism and gut microbiota. Front Nutr 7:596285. https://doi.org/10.3389/fnut.2020.596285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhu S, Surampudi P, Rosharavan B, Chondronikola M (2020) Intermittent fasting as a nutrition approach against obesity and metabolic disease. Curr Opin Clin Nutr Metab Care 23:387–394. https://doi.org/10.1097/MCO.0000000000000694

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Coimbra Health School (ESTeSC) for the equipment used.

Funding

This work was supported by the Portuguese Science and Technology Foundation (FCT): Strategic Project UIDB/04539/2020 (CIBB).

Author information

Authors and Affiliations

Authors

Contributions

Lisandra Joaquim was responsible for literature search and for the first draft. Ana Faria and Helena Loureiro were involved in manuscript reading and correction, while Paulo Matafome was responsible for the last version of the manuscript and is the senior author. ‘The authors declare that all data were generated in-house and that no paper mill was used’.

Corresponding author

Correspondence to Paulo Matafome.

Ethics declarations

Research involving human participants and/or animals

No.

Informed consent

Non-applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

- IF is an emergent nutritional strategy for improving multiple features of cardiometabolic and age-related pathologies, due to weight and insulin resistance reduction.

- IF upregulates evolution-conserved adaptive cellular responses, such as stress-response pathways, autophagy, and mitochondrial function

- IF regulates the circadian rhythms of hormones like insulin or leptin, among others.

- Too long interventions, severe energy restriction, and the anterior metabolic status of the participants may conduce to the opposite effects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joaquim, L., Faria, A., Loureiro, H. et al. Benefits, mechanisms, and risks of intermittent fasting in metabolic syndrome and type 2 diabetes. J Physiol Biochem 78, 295–305 (2022). https://doi.org/10.1007/s13105-021-00839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-021-00839-4

Keywords

Navigation