Skip to main content
Log in

Multi-Scale Modelling of Powder Dispersion in a Carrier-Based Inhalation System

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Carrier-based dry powder inhalers (DPIs) are widely used for rapid and convenient delivery of drug to the site of action. This work aimed to predict powder aerosolisation in DPIs through numerical modelling.

Methods

A multi-scale modelling technique based on the combined computational fluid dynamics (CFD) and discrete element method (DEM) approach was developed.

Results

The simulation results of the detachments of the drug particles from single carrier under different impact velocities and angles were comparable with those measured in the experiments in terms of fine particle fraction FPF loaded . Empirical equations were developed to link the detachment performance with impact velocity and impact angle. Then the dynamics of the carrier particles in Aerolizer® was simulated. The results indicated that the carrier-wall impaction was the dominant mechanism for drug aerosolisation performance. By linking the empirical equations with the carrier-wall impact energy, the predictions showed that for a given formulation mass with a fixed carrier/drug ratio, the inhaler performance decreased with carrier size and increased with air flow rate. Device empty efficiency, however, was independent with carrier size and flow rate.

Conclusions

The multi-scale model was able to provide quantitative information to better understand the aerosolisation mechanisms of carrier-based formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Patton J. Breathing life into protein drugs. Nat Biotechnol. 1998;16(2):141–3.

    Article  CAS  PubMed  Google Scholar 

  2. Clark AR. Pulmonary delivery technology: recent advances and potential for the new millennium. In: Hickey AJ, editor. Pharmaceutical Inhalation aerosol technology. New York: Marcel Dekker, Inc.; 2004. p. 571–91.

    Google Scholar 

  3. Chan H-K. Dry powder aerosol drug delivery-opportunities for colloid and surface scientists. Colloids Surf A Physicochem Eng Asp. 2006;284–285:50–5.

    Article  Google Scholar 

  4. Chan HK. Dry powder aerosol delivery systems: current and future research directions. J Aerosol Med-Depos Clearance Eff Lung. 2006;19(1):21–7.

    Article  CAS  Google Scholar 

  5. Islam N, Gladki E. Dry powder inhalers (DPIs)–A review of device reliability and innovation. Int J Pharm. 2008;360(1–2):1–11.

    Article  CAS  PubMed  Google Scholar 

  6. Frijlink HW, De Boer AH. Dry powder inhalers for pulmonary drug delivery. Expert Opin Drug Deliv. 2004;1(1):67–86.

    Article  CAS  PubMed  Google Scholar 

  7. Bell JH, Hartley PS, Cox JS. Dry powder aerosols. I: a new powder inhalation device. J Pharm Sci. 1971;60(10):1559–64.

    Article  CAS  PubMed  Google Scholar 

  8. Malcolmson RJ, Embleton JK. Dry powder formulations for pulmonary delivery. Pharm Sci Technol. 1998;1(9):394–8.

    Article  CAS  Google Scholar 

  9. Hersey JA. Ordered mixing: a new concept in powder mixing practice. Powder Technol. 1975;11(1):41–4.

    Article  Google Scholar 

  10. Kawashima Y, Serigano T, Hino T, Yamamoto H, Takeuchi H. Effect of surface morphology of carrier lactose on dry powder inhalation property of pranlukast hydrate. Int J Pharm. 1998;172(1–2):179–88.

    Article  CAS  Google Scholar 

  11. Young PM, Kwok P, Adi H, Chan HK, Traini D. Lactose composite carriers for respiratory delivery. Pharm Res. 2009;26(4):802–10.

    Article  CAS  PubMed  Google Scholar 

  12. Traini D, Young PM, Thielmann F, Acharya M. The influence of lactose pseudopolymorphic form on salbutamol sulfate-lactose interactions in dpi formulations. Drug Dev Ind Pharm. 2008;34(9):992–1001.

    Article  CAS  PubMed  Google Scholar 

  13. Dickhoff BHJ, De Boer AH, Lambregts D, Frijlink HW. The effect of carrier surface and bulk properties on drug particle detachment from crystalline lactose carrier particles during inhalation, as function of carrier payload and mixing time. Eur J Pharm Biopharm. 2003;56(2):291–302.

    Article  CAS  PubMed  Google Scholar 

  14. Donovan MJ, Smyth HDC. Influence of size and surface roughness of large lactose carrier particles in dry powder inhaler formulations. Int J Pharm. 2010;402(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  15. Ooi J, Traini D, Hoe S, Wong W, Young PM. Does carrier size matter? A fundamental study of drug aerosolisation from carrier based dry powder inhalation systems. Int J Pharm. 2011;413(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  16. Guenette E, Barrett A, Kraus D, Brody R, Harding L, Magee G. Understanding the effect of lactose particle size on the properties of DPI formulations using experimental design. Int J Pharm. 2009;380(1–2):80–8.

    Article  CAS  PubMed  Google Scholar 

  17. De Boer AH, Dickhoff BHJ, Hagedoorn P, Gjaltema D, Goede J, Lambregts D, et al. A critical evaluation of the relevant parameters for drug redispersion from adhesive mixtures during inhalation. Int J Pharm. 2005;294(1–2):173–84.

    Article  PubMed  Google Scholar 

  18. Islam N, Stewart P, Larson I, Hartley P. Lactose surface modification by decantation: are drug-fine lactose ratios the key to better dispersion of salmeterol xinafoate from lactose-interactive mixtures? Pharm Res. 2004;21(3):492–9.

    Article  CAS  PubMed  Google Scholar 

  19. Young PM, Edge S, Traini D, Jones MD, Price R, El-Sabawi D, et al. The influence of dose on the performance of dry powder inhalation systems. Int J Pharm. 2005;296(1–2):26–33.

    Article  CAS  PubMed  Google Scholar 

  20. Young PM, Wood O, Ooi J, Traini D. The influence of drug loading on formulation structure and aerosol performance in carrier based dry powder inhalers. Int J Pharm. 2011;416(1):129–35.

    Article  CAS  PubMed  Google Scholar 

  21. Jones MD, Price R. The influence of fine excipient particles on the performance of carrier-based dry powder inhalation formulations. Pharm Res. 2006;23(8):1665–74.

    Article  CAS  PubMed  Google Scholar 

  22. Hoe S, Traini D, Chan H-K, Young P. The contribution of different formulation components on the aerosol charge in carrier-based dry powder inhaler systems. Pharm Res. 2010;27(7):1325–36.

    Article  CAS  PubMed  Google Scholar 

  23. Young P, Sung A, Traini D, Kwok P, Chiou H, Chan H-K. Influence of humidity on the electrostatic charge and aerosol performance of dry powder inhaler carrier based systems. Pharm Res. 2007;24(5):963–70.

    Article  CAS  PubMed  Google Scholar 

  24. Ganderton D, Kassem, N.M. DRY Powder inhalers: Advances in Pharmaceutical Sciences. London: Academic Press; 1992. P. 165–191.

  25. Coates MS, Fletcher DF, Chan HK, Raper JA. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. part 1: grid structure and mouthpiece length. J Pharm Sci. 2004;93(11):2863–76.

    Article  CAS  PubMed  Google Scholar 

  26. Coates MS, Chan HK, Fletcher DF, Raper JA. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. part 2: air inlet size. J Pharm Sci. 2006;95(6):1382–92.

    Article  CAS  PubMed  Google Scholar 

  27. Tong ZB, Yang RY, Yu AB, Adi S, Chan HK. Numerical modelling of the breakage of loose agglomerates of fine particles. Powder Technol. 2009;196(2):213–21.

    Article  CAS  Google Scholar 

  28. Tong ZB, Yang RY, Chu KW, Yu AB, Adi S, Chan HK. Numerical study of the effects of particle size and polydispersity on the agglomerate dispersion in a cyclonic flow. Chem Eng J. 2010;164(2–3):432–41.

    Article  CAS  Google Scholar 

  29. Tong ZB, Zheng B, Yang RY, Yu AB, Chan HK. CFD-DEM investigation of the dispersion mechanisms in commercial dry powder inhalers. Powder Technol. 2013;240:19–24.

    Article  CAS  Google Scholar 

  30. Yang J, Wu C-Y, Adams M. A. three-dimensional DEM–CFD analysis of air-flow-induced detachment of api particles from carrier particles in dry powder inhalers. Acta Pharm Sinica B. 2014;4:52–9.

    Article  Google Scholar 

  31. Zhu HP, Zhou ZY, Yang RY, Yu AB. Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci. 2007;62(13):3378–96.

    Article  CAS  Google Scholar 

  32. Gidaspow D. Multiphase flow and fluidization. San Diego: Academic; 1994.

    Google Scholar 

  33. Chu KW, Wang B, Yu AB, Vince A. Cfd-dem modelling of multiphase flow in dense medium cyclones. Powder Technol. 2009;193(3):235–47.

    Article  CAS  Google Scholar 

  34. Launder BE, Reece GJ, Rodi W. Progress in development of a Reynolds-stress turbulence closure. J Fluid Mech. 1975;68:537–66.

    Article  Google Scholar 

  35. Wang B, Xu DL, Chu KW, Yu AB. Numerical study of gas-solid flow in a cyclone separator. Appl Math Model. 2006;30(11):1326–42.

    Article  Google Scholar 

  36. Adi S, Tong Z, Chan H-K, Yang R, Yu A. Impact angles as an alternative way to improve aerosolisation of powders for inhalation? Eur J Pharm Sci. 2010;41(2):320–7.

    Article  CAS  PubMed  Google Scholar 

  37. Tong Z, Adi S, Yang R, Chan H, Yu A. Numerical investigation of the de-agglomeration mechanisms of fine powders on mechanical impaction. J Aerosol Sci. 2011;42(11):811–9.

    Article  CAS  Google Scholar 

  38. Coates M, Chan H-K, Fletcher D, Raper J. The role of capsule on the performance of a dry powder inhaler using computational and experimental analyses. Pharm Res. 2005;22(6):923–32.

    Article  CAS  PubMed  Google Scholar 

  39. Chew NYK, Bagster DF, Chan HK. Effect of particle size, air flow and inhaler device on the aerosolisation of disodium cromoglycate powders. Int J Pharm. 2000;206(1–2):75–83.

    Article  CAS  PubMed  Google Scholar 

  40. Chew NYK, Chan HK. Influence of particle size, air flow, and inhaler device on the dispersion of mannitol powders as aerosols. Pharm Res. 1999;16(7):1098–103.

    Article  CAS  PubMed  Google Scholar 

  41. Bronsky EA, Grossman J, Henis MJ, Gallo PP, Yegen Ü, Cioppa GD, et al. Inspiratory flow rates and volumes with the Aerolizer dry powder inhaler in asthmatic children and adults. Curr Med Res Opin. 2004;20(2):131–7.

    Article  PubMed  Google Scholar 

  42. Coates MS, Chan HK, Fletcher DF, Raper JA. Influence of air flow on the performance of a dry powder inhaler using computational and experimental analyses. Pharm Res. 2005;22(9):1445–53.

    Article  CAS  PubMed  Google Scholar 

  43. Tong Z, Yang R, Yu A, Adi S, Chan H. Numerical modelling of the breakage of loose agglomerates of fine particles. Powder Technol. 2009;196(2):213–21.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Authors are grateful to the Japan Society for the Promotion of Science (JSPS) and the Australia Research Council (ARC) for the financial support through the Discovery Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runyu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Z., Kamiya, H., Yu, A. et al. Multi-Scale Modelling of Powder Dispersion in a Carrier-Based Inhalation System. Pharm Res 32, 2086–2096 (2015). https://doi.org/10.1007/s11095-014-1601-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1601-2

KEY WORDS

Navigation