Skip to main content

The Importance of Interactions Between Carrier and Drug Particles for the Application in Dry Powder Inhalers

  • Chapter
  • First Online:
Particles in Contact

Abstract

The design of formulations intended for inhalation is a major challenge since many different factors need consideration in order to guarantee major drug delivery. This becomes especially important in dry powder inhalation. Balanced inter-particle interactions between carrier and drug particles are key factors for an optimal aerodynamic performance. This work combines an experimental approach utilising spherical glass beads as model carrier and simulations of device properties as well as particle-particle interactions to gain deeper understanding of processes during inhalation and their effect on aerodynamic performance. Surface roughness modification of the carrier proved to influence the effective drug loading of distinct drug particles. Moreover, surface topography had a major impact on the aerodynamic performance as micron-sized indentations drastically reduced the fine particle fraction (FPF). This could be linked to their ability of sheltering drug particles from the airstream during inhalation. Nano-scale roughness on the other hand led to a significant increase of the FPF. The impact of the inhalation device itself was also taken into account. The conducted numerical calculations (CFD) have provided more insight into carrier particle transport and drug detachment in the case of carrier-based formulations. A multi-scale approach was adopted to numerically analyse the performance of inhaler devices. First, the motion of carrier particles through a swirl-type inhaler was simulated to provide information on flow stresses acting on carrier and on wall collision statistics. Fully resolved simulations of carrier covered by hundreds of drug particles in connection with measured adhesion properties showed that flow-induced drug detachment will only be possible if the van der Waals force between carrier and drug is very weak (i.e. requiring surface modification). However, in the considered swirl-type inhaler the wall collision number of carriers is quite high, being the reason for an efficient drug detachment through inertia. A developed wall collision detachment model revealed that almost 100% of the drug powder is detached within the inhaler, which does not correspond to experimental observations. Consequently, also drug powder deposition on the inhaler walls needs to be accounted for, in order to allow correct predictions of the emitted dose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rau, J.L.: The inhalation of drugs: advantages and problems. Respir. Care 50, 367–382 (2005)

    Google Scholar 

  2. Pham, D.-D., Fattal, E., Tsapis, N.: Pulmonary drug delivery systems for tuberculosis treatment. Int. J. Pharm. 478, 517–529 (2015)

    Article  CAS  Google Scholar 

  3. Onoue, S., Yamada, S.: Pirfenidone in respirable powder form for the treatment of pulmonary fibrosis: a safer alternative to the current oral delivery system? Ther. Deliv. 4, 887–889 (2013)

    Article  CAS  Google Scholar 

  4. Thiringer, G., Svedmyr, N.: Comparison of infused and inhaled terbutaline in patients with asthma. Scand. J. Respir. Dis. 57, 17–24 (1976)

    CAS  Google Scholar 

  5. Zhou, Q.T., Leung, S.S.Y., Tang, P., Parumasivam, T., Loh, Z.H., Chan, H.-K.: Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv. Drug Deliv. Rev. 85, 83–99 (2015)

    Article  CAS  Google Scholar 

  6. Kwok, P.C.L., Chan, H.-K.: Pulmonary delivery of peptides and proteins. In: van der Walle, C. (ed.) Peptide and Protein Delivery, pp. 23–46. Elsevier Science, San Diego, CA, USA (2011)

    Chapter  Google Scholar 

  7. Garcia-Contreras, L., Smyth, H.: Liquid-spray or dry-powder systems for inhaled delivery of peptides and proteins? Am. J. Drug Deliv. 3, 29–45 (2005)

    Article  CAS  Google Scholar 

  8. Wall, D.A.: Pulmonary absorption of peptides and proteins. Drug Deliv. 2, 1–20 (2008)

    Article  Google Scholar 

  9. Kwok, P.C.L., Chan, H.-K.: Pulmonary drug delivery. Ther. Deliv. 4, 877–878 (2013)

    Article  CAS  Google Scholar 

  10. Chrystyn, H.: Is total particle dose more important than particle distribution? Respir. Med. 91, 17–19 (1997)

    Article  Google Scholar 

  11. Ashurt, I., Malton, A., Prime, D., Sumby, B.: Latest advances in the development of dry powder inhalers. Pharm. Sci. Technol. Today 3, 246–256 (2000)

    Article  Google Scholar 

  12. Kawashima, Y., Imai, M., Takeuchi, H., Yamamoto, H., Kamiya, K., Hino, T.: Improved flowability and compactibility of spherically agglomerated crystals of ascorbic acid for direct tableting designed by spherical crystallization process. Powder Technol. 130, 283–289 (2003)

    Article  CAS  Google Scholar 

  13. Podczeck, F.: The relationship between physical properties of lactose monohydrate and the aerodynamic behaviour of adhered drug particles. Int. J. Pharm. 160, 119–130 (1998)

    Article  CAS  Google Scholar 

  14. Shur, J., Saluja, B., Lee, S., Tibbatts, J., Price, R.: Effect of device design and formulation on the in vitro comparability for multi-dose dry powder inhalers. AAPS J. 17, 1105–1116 (2015)

    Article  CAS  Google Scholar 

  15. Telko, M.J., Hickey, J.A.: Dry powder inhaler formulation. Respir. Care 50, 1209–1227 (2005)

    Google Scholar 

  16. Lohrmann, M.: Adhäsionskräfte in interaktiven Mischungen für Pulverinhalatoren (2005)

    Google Scholar 

  17. Young, P.M., Roberts, D., Chiou, H., Rae, W., Chan, H.-K., Traini, D.: Composite carriers improve the aerosolisation efficiency of drugs for respiratory delivery. J. Aerosol Sci. 39, 82–93 (2008)

    Article  CAS  Google Scholar 

  18. Larhrib, H., Martin, G.P., Marriott, C., Prime, D.: The influence of carrier and drug morphology on drug delivery from dry powder formulations. Int. J. Pharm. 257, 283–296 (2003)

    Article  CAS  Google Scholar 

  19. Zeng, X.M., Martin, G.P., Marriott, C., Pritchard, J.: The influence of crystallization conditions on the morphology of lactose intended for use as a carrier for dry powder aerosols. J. Pharm. Pharmacol. 52, 633–643 (2000)

    Article  CAS  Google Scholar 

  20. Zeng, X.M., Martin, G.P., Marriott, C., Pritchard, J.: The use of lactose recrystallised from carbopol gels as a carrier for aerosolised salbutamol sulphate. Eur. J. Pharm. Biopharm. 51, 55–62 (2001)

    Article  CAS  Google Scholar 

  21. Chan, L.W., Lim, L.T., Heng, P.W.S.: Immobilization of fine particles on lactose carrier by precision coating and its effect on the performance of dry powder formulations. J. Pharm. Sci. 92, 975–984 (2003)

    Article  CAS  Google Scholar 

  22. Iida, K., Todo, H., Okamoto, H., Danjo, K., Leuenberger, H.: Preparation of dry powder inhalation with lactose carrier particles surface-coated using a Wurster fluidized bed. Chem. Pharm. Bull. 53, 431–434 (2005)

    Article  CAS  Google Scholar 

  23. Adi, H., Larson, I., Stewart, P.: Use of milling and wet sieving to produce narrow particle size distributions of lactose monohydrate in the sub-sieve range. Powder Technol. 179, 95–99 (2007)

    Article  CAS  Google Scholar 

  24. Dickhoff, B.H.J., de Boer A.H., Lambregts, D., Frijlink, H.W.: The effect of carrier surface and bulk properties on drug particle detachment from crystalline lactose carrier particles during inhalation, as function of carrier payload and mixing time. Eur. J. Pharm. Biopharm. 56, 291–302 (2003)

    Article  CAS  Google Scholar 

  25. El-Sabawi, D., Price, R., Edge, S., Young, P.M.: Novel temperature controlled surface dissolution of excipient particles for carrier based dry powder inhaler formulations. Drug Dev. Ind. Pharm. 32, 243–251 (2006)

    Article  CAS  Google Scholar 

  26. Iida, K., Hayakawa, Y., Okamoto, H., Danjo, K., Leuenberger, H.: Preparation of dry powder inhalation by surface treatment of lactose carrier particles. Chem. Pharm. Bull. 51, 1–5 (2003)

    Article  CAS  Google Scholar 

  27. Islam, N., Stewart, P., Larson, I., Hartley, P.: Lactose surface modification by decantation: are drug-fine lactose ratios the key to better dispersion of salmeterol xinafoate from lactose-interactive mixtures? Pharm. Res. 21, 492–499 (2004)

    Article  CAS  Google Scholar 

  28. Littringer, E.M., Mescher, A., Eckhard, S., Schröttner, H., Langes, C., Fries, M., et al.: Spray drying of mannitol as a drug carrier—the impact of process parameters on product properties. Dry. Technol. 30, 114–124 (2012)

    Article  CAS  Google Scholar 

  29. Maas, S.G., Schaldach, G., Littringer, E.M., Mescher, A., Griesser, U.J., Braun, D.E., et al.: The impact of spray drying outlet temperature on the particle morphology of mannitol. Powder Technol. 213, 27–35 (2011)

    Article  CAS  Google Scholar 

  30. Littringer, E.M., Mescher, A., Schroettner, H., Achelis, L., Walzel, P., Urbanetz, N.A.: Spray dried mannitol carrier particles with tailored surface properties—the influence of carrier surface roughness and shape. Eur. J. Pharm. Biopharm. 82, 194–204 (2012)

    Article  CAS  Google Scholar 

  31. Ferrari, F., Cocconi, D., Bettini, R., Giordano, F., Santi, P., Tobyn, M., et al.: The surface roughness of lactose particles can be modulated by wet-smoothing using a high-shear mixer. AAPS PharmSciTech 5, 1–6 (2004)

    Article  Google Scholar 

  32. Young, P.M., Cocconi, D., Colombo, P., Bettini, R., Price, R., Steele, D.F., et al.: Characterization of a surface modified dry powder inhalation carrier prepared by ‘‘particle smoothing’’. J. Pharm. Pharmacol. 1339–44 (2002)

    Article  CAS  Google Scholar 

  33. Iida, K., Inagaki, Y., Todo, H., Okamoto, H., Danjo, K., Luenberger, H.: Effects of surface processing of lactose carrier particles on dry powder inhalation properties of salbutamol sulfate. Chem. Pharm. Bull. 52, 938–942 (2004)

    Article  CAS  Google Scholar 

  34. Steckel, H., Markefka, P., TeWierik, H., Kammelar, R.: Effect of milling and sieving on functionality of dry powder inhalation products. Int. J. Pharm. 309, 51–59 (2006)

    Article  CAS  Google Scholar 

  35. Maas, S.G.: Optimierung trägerbasierter Pulverinhalate durch Modifikation der Trägeroberfläche mittels Sprühtrocknung (2009)

    Google Scholar 

  36. Kawashima, Y., Serigano, T., Hino, T., Yamamoto, H., Takeuchi, H.: Effect of surface morphology of carrier lactose on dry powder inhalation property of pranlukast hydrate. Int. J. Pharm. 172, 179–188 (1998)

    Article  CAS  Google Scholar 

  37. Steckel, H., Mu, B.W.: In vitro evaluation of dry powder inhalers II: influence of carrier particle size and concentration on in vitro deposition. Int. J. Pharm. 154, 31–37 (1997)

    Article  CAS  Google Scholar 

  38. Srichana, T., Martin, G.P., Marriott, C.: Dry powder inhalers: the influence of device resistance and powder formulation on drug and lactose deposition in vitro. Eur. J. Pharm. Sci.: Off. J. Eur. Fed. Pharm. Sci. 7, 73–80 (1998)

    Article  CAS  Google Scholar 

  39. Telko, M.J., Dsc, A.J.H.: Dry powder inhaler formulation. Respir. Care 50, 1209–1227 (2005)

    Google Scholar 

  40. Chew, N.Y.K., Chan, H.-K.: The role of particle properties in pharmaceutical powder inhalation formulations. J. Aerosol Med. 15, 325–330 (2002)

    Article  CAS  Google Scholar 

  41. Newman, S.P., Busse, W.W.: Evolution of dry powder inhaler design, formulation, and performance. Respir. Med. 96, 293–304 (2002)

    Article  CAS  Google Scholar 

  42. Wong, W., Fletcher, D.F., Traini, D., Chan, H.-K., Young, P.M.: The use of computational approaches in inhaler development. Adv. Drug Deliv. Rev. 64, 312–322 (2012)

    Article  CAS  Google Scholar 

  43. Ruzycki, C.A., Javaheri, E., Finlay, W.H.: The use of computational fluid dynamics in inhaler design. Expert. Opin. Drug Deliv. 10, 307–323 (2013)

    Article  CAS  Google Scholar 

  44. Sommerfeld, M., Schmalfuß, S.: Numerical analysis of carrier particle motion in a dry powder inhaler. J. Fluids Eng. 138, 041308 (2015)

    Article  Google Scholar 

  45. Coates, M.S., Fletcher, D.F., Chan, H.-K., Raper, J.A.: Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 1: Grid structure and mouthpiece length. J. Pharm. Sci. 93, 2863–2876 (2004)

    Article  CAS  Google Scholar 

  46. Coates, M.S., Chan, H.-K., Fletcher, D.F., Raper, J.A.: Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 2: Air inlet size. J. Pharm. Sci. 95, 1382–1392 (2006)

    Article  CAS  Google Scholar 

  47. Coates, M.S., Chan, H.-K., Fletcher, D.F., Chiou, H.: Influence of mouthpiece geometry on the aerosol delivery performance of a dry powder inhaler. Pharm. Res. 24, 1450–1456 (2007)

    Article  CAS  Google Scholar 

  48. Coates, M.S., Fletcher, D.F., Chan, H.-K., Raper, J.A.: The role of capsule on the performance of a dry powder inhaler using computational and experimental analyses. Pharm. Res. 22, 923–931 (2005)

    Article  CAS  Google Scholar 

  49. Donovan, M.J., Kim, S.H., Raman, V., Smyth, H.D.: Dry powder inhaler device influence on carrier particle performance. J. Pharm. Sci. 101, 1097–1107 (2012)

    Article  CAS  Google Scholar 

  50. Milenkovic, J., Alexopoulos, A.H., Kiparissides, C.: Flow and particle deposition in the Turbuhaler: a CFD simulation. Int. J. Pharm. 448, 205–213 (2013)

    Article  CAS  Google Scholar 

  51. de Boer, A.H., Hagedoorn, P., Woolhouse, R., Wynn, E.: Computational fluid dynamics (CFD) assisted performance evaluation of the TwincerTM disposable high-dose dry powder inhaler. J. Pharm. Pharmacol. 64, 1316–1325 (2012)

    Article  Google Scholar 

  52. Behara, S.R.B., Longest, P.W., Farkas, D.R., Hindle, M.: Development and comparison of new high-efficiency dry powder inhalers for carrier-free formulations. J. Pharm. Sci. 103, 465–477 (2014)

    Article  CAS  Google Scholar 

  53. Tong, Z.B., Yang, R.Y., Chu, K.W., Yu, A.B., Adi, S., Chan, H.K.: Numerical study of the effects of particle size and polydispersity on the agglomerate dispersion in a cyclonic flow. Chem. Eng. J. 164, 432–441 (2010)

    Article  CAS  Google Scholar 

  54. Yang, J., Wu, C.-Y., Adams, M.: Three-dimensional DEM-CFD analysis of air-flow-induced detachment of API particles from carrier particles in dry powder inhalers. Acta Pharm. Sin. B 4, 52–59 (2014)

    Article  Google Scholar 

  55. van Wachem, B., Thalberg, K., Remmelgas, J., Niklasson-Björn, I.: Simulation of dry powder inhalers: combining micro-scale, meso-scale and macro-scale modeling. AIChE J. 63, 501–516 (2017)

    Article  Google Scholar 

  56. Hoppentocht, M., Hagedoorn, P., Frijlink, H.W., De Boer, A.H.: Technological and practical challenges of dry powder inhalers and formulations. Adv. Drug Deliv. Rev. 75, 18–31 (2014)

    Article  CAS  Google Scholar 

  57. Rahimpour, Y., Kouhsoltani, M., Hamishehkar, H.: Alternative carriers in dry powder inhaler formulations. Drug Discov. Today 19, 618–626 (2014)

    Article  Google Scholar 

  58. Zellnitz, S., Redlinger-Pohn, J.D., Kappl, M., Schroettner, H., Urbanetz, N.A.: Preparation and characterization of physically modified glass beads used as model carriers in dry powder inhalers. Int. J. Pharm. 447, 132–138 (2013)

    Article  CAS  Google Scholar 

  59. Cui, Y., Schmalfuß, S., Zellnitz, S., Sommerfeld, M., Urbanetz, N.A.: Towards the optimisation and adaptation of dry powder inhalers. Int. J. Pharm. 470, 120–132 (2014)

    Article  CAS  Google Scholar 

  60. Cui, Y., Sommerfeld, M.: Forces on micron-sized particles randomly distributed on the surface of larger particles and possibility of detachment. Int. J. Multiph. Flow 72, 39–52 (2015)

    Article  CAS  Google Scholar 

  61. Cui, Y., Sommerfeld, M.: Application of Lattice-Boltzmann method for analysing detachment of micron-sized particles from carrier particles in turbulent flows. Flow Turbul. Combust. 100, 271–297 (2018)

    Article  CAS  Google Scholar 

  62. Cui, Y., Sommerfeld, M.: The modelling of carrier-wall collision with drug particle detachment for dry powder inhaler applications. Powder Technol. 344, 741–755 (2019). https://doi.org/10.1016/j-powtec.2018.12.067

  63. Sommerfeld, M., Cui, Y., Schmalfuß, S.: Potentials and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers. Eur. J. Pharm. Sci. 129, 299–324 (2019)

    Article  Google Scholar 

  64. Milenkovic, J., Alexopoulos, A.H., Kiparissides, C.: Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach. Int. J. Pharm. 461, 129–136 (2014)

    Article  CAS  Google Scholar 

  65. Littringer, E.M., Zellnitz, S., Hammernik, K., Adamer, V., Friedl, H., Urbanetz, N.A.: Spray drying of aqueous salbutamol sulfate solutions using the Nano Spray Dryer B-90—the impact of process parameters on particle size. Dry. Technol. 31, 1346–1353 (2013)

    Article  CAS  Google Scholar 

  66. Flament, M.-P., Leterme, P., Gayot, A.: The influence of carrier roughness on adhesion, content uniformity and the in vitro deposition of terbutaline sulphate from dry powder inhalers. Int. J. Pharm. 275, 201–209 (2004)

    Article  CAS  Google Scholar 

  67. Renner, N., Steckel, H., Urbanetz, N., Scherließ, R.: Nano- and microstructured model carrier surfaces to alter dry powder inhaler performance. Int. J. Pharm. 518, 20–28 (2017)

    Article  CAS  Google Scholar 

  68. Friebel, C., Steckel, H., Müller, B.W.: Rational design of a dry powder inhaler: device design and optimisation. J. Pharm. Pharmacol. 64, 1303–1315 (2012)

    Article  CAS  Google Scholar 

  69. Friebel, C.: Rational development of an inhalation system. Ph.D. Thesis, Kiel University (2010)

    Google Scholar 

  70. Ariane, M., Sommerfeld, M., Alexiadis, A.: Wall collision and drug-carrier detachment in dry powder inhalers: using DEM to devise a sub-scale model for CFD calculations. Powder Technol. 334, 65–75 (2018)

    Article  CAS  Google Scholar 

  71. Sommerfeld, M., van Wachem, B., Oliemans, R.: Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC (European Research Community on Flow, Turbulence and Combustion). ISBN 978-91-633-3564-8 (2008)

    Google Scholar 

  72. Sommerfeld, M.: Modelling of particle-wall collisions in confined gas-particle flows. Int. J. Multiph. Flow 18, 905–926 (1992)

    Article  CAS  Google Scholar 

  73. Sommerfeld, M., Huber, N.: Experimental analysis and modelling of particle-wall collisions. Int. J. Multiph. Flow 25, 1457–1489 (1999)

    Article  CAS  Google Scholar 

  74. Dietzel, M., Sommerfeld, M.: Numerical calculation of flow resistance for agglomerates with different morphology by the Lattice-Boltzmann method. Powder Technol. 250, 122–137 (2013)

    Article  CAS  Google Scholar 

  75. Ibrahim, A.H., Dunn, P.F., Brach, R.M.: Microparticle detachment from surfaces exposed to turbulent air flow: controlled experiments and modeling. J. Aerosol Sci. 34, 765–782 (2003)

    Article  CAS  Google Scholar 

  76. Goldasteh, I., Ahmadi, G., Ferro, A.R.: Monte Carlo simulation of micron size spherical particle removal and resuspension from substrate under fluid flows. J. Aerosol Sci. 66, 62–71 (2013)

    Article  CAS  Google Scholar 

  77. Zellnitz, S., Schroettner, H., Urbanetz, N.A.: Influence of surface characteristics of modified glass beads as model carriers in dry powder inhalers (DPIs) on the aerosolization performance. Drug Dev. Ind. Pharm. 1–8 (2015)

    Google Scholar 

  78. Crowe, C.T., Schwarzkopf, J.D., Sommerfeld, M., Tsuji, Y.: Multiphase Flows with Droplets and Particles, 2nd edn. CRC Press, Boca Raton, U.S.A (2012). ISBN 978-1-4398-4050-4

    Google Scholar 

  79. Tsuji, Y., Morikawa, Y., Tanaka, T., Nakatsukasa, N., Nakatani, M.: Numerical simulation of gas-solid two-phase flow in a two-dimensional horizontal channel. Int. J. Multiph. Flow 13, 671–684 (1987)

    Article  CAS  Google Scholar 

  80. Renner, N.: Understanding interparticle interactions in dry powder inhalation: glass beads as an innovative model carrier system, p. 181. Dissertation, Department of Pharmaceutics and Biopharmaceutics, Kiel University (2017)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding of this research project by the German Research Foundation (DFG) within the priority program SPP 1486 “Particles in Contact”. The authors would also like to thank the research group of Dr. Michael Kappl and Dr. Regina Fuchs (Max Planck Institute for Polymer Research, Mainz) for providing technical support and equipment for AFM measurements. Further, the authors would thank Hartmuth Schroettner from FELMI-ZFE (Institute of Electron Microscopy and Nanoanalysis) for providing SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Sommerfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zellnitz, S. et al. (2019). The Importance of Interactions Between Carrier and Drug Particles for the Application in Dry Powder Inhalers. In: Antonyuk, S. (eds) Particles in Contact. Springer, Cham. https://doi.org/10.1007/978-3-030-15899-6_16

Download citation

Publish with us

Policies and ethics